DAI Yan, YUAN Ying, ZHANG Jing, et al. Food 3D Printing Technology and Application in Modern Food Industry:A Review[J]. Science and Technology of Food Industry, 2022, 43(7): 35−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100326.
Citation: DAI Yan, YUAN Ying, ZHANG Jing, et al. Food 3D Printing Technology and Application in Modern Food Industry:A Review[J]. Science and Technology of Food Industry, 2022, 43(7): 35−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100326.

Food 3D Printing Technology and Application in Modern Food Industry:A Review

More Information
  • Received Date: October 31, 2021
  • Available Online: February 09, 2022
  • As a new technology, 3D printing technology, which integrates digital software and processing equipment, can achieve customized, printable and batch production of object constructions. In recent years, the 3D printing technology, combined with modern food industry, could provide nutritional and personalized food in time-efficient, personalized and sustainable way. Therefore, this article introduces the classification, platform design, implement scheme, available printing material and assistant technology in 3D printing technology, current application of 3D printing in vegetables and fruits, desserts, powder food, traditional meat and aquatic products, cultured meat products and other special food, and explore the development prospects of future 3D printing technology. It is expected to provide more strategies for research and development of food 3D/4D/XD printing technology.
  • [1]
    DICK A, BHANDARI B, PRAKASH S. 3D printing of meat[J]. Meat Science,2019,153:35−44. doi: 10.1016/j.meatsci.2019.03.005
    [2]
    李光玲. 食品3D打印的发展及挑战[J]. 食品与机械,2015,31(1):231−234. [LI G L. Development and challenge of 3D print in the food industry[J]. Food and Machinery,2015,31(1):231−234.
    [3]
    杨耿涵, 黄明远, 徐幸莲. 食品3D打印技术及其在肉类加工中应用的研究进展[J/OL]. 食品科学: 1−10 [2021-08-25]. http://kns.cnki.net/kcms/detail/ 11.2206. TS.20201228. 1629.036.html.

    YANG G H, HUANG M Y, XU X L. Food 3D printing technology and its application in meat processing: A review [J/OL]. Food Science: 1−10 [2021-08-25]. http://kns.cnki.net/ kcms/detail/11.2206.TS.20201228.1629.036.html.
    [4]
    关春燕, 陈雪龙. 3D打印技术在动物标本中的应用[J]. 现代畜牧科技,2021(9):6−7. [GUAN C Y, CHEN X L. Application of 3D printing technology in animal specimen technology[J]. Modern Animal Husbandry Science & Technology,2021(9):6−7.
    [5]
    石磊, 国思茗. 基于食品3D打印原料的信息物理要素组合及动态机制溯源系统研究[J]. 电子测试,2020(10):66−68. [SHI L, GUO S M. Research on traceability system of edible materials for new 3D printing[J]. Electronic Test,2020(10):66−68. doi: 10.3969/j.issn.1000-8519.2020.10.023
    [6]
    LIU C, XU N, ZONG Q D, et al. Hydrogel prepared by 3D printing technology and its applications in the medical field[J]. Colloid and Interface Science Communications,2021,44:100498. doi: 10.1016/j.colcom.2021.100498
    [7]
    BHAT Z F, MORTON J D, KUMAR S, et al. 3D printing: Development of animal products and special foods[J]. Science Direct, 2021, 118(A): 87−105.
    [8]
    MOHAMMED A A, ALGAHTANI M S, AHMAD M Z, et al. Optimization of semisolid extrusion (pressure-assisted microsyringe)-based 3D printing process for advanced drug delivery application[J]. Annals of 3D Printed Medicine,2021,2:100008. doi: 10.1016/j.stlm.2021.100008
    [9]
    PANT A, LEE A Y, KARYAPPA R, et al. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients[J]. Food Hydrocolloids,2021,114:106546. doi: 10.1016/j.foodhyd.2020.106546
    [10]
    HANDRAL H K, TAY H S, CHAN W W, et al. 3D Printing of cultured meat products[J]. Crit Rev Food Sci Nutr,2020,21:1−10.
    [11]
    SUN J, ZHOU W B, HUANG D J, et al. An overview of 3D printing technologies for food fabrication[J]. Food & Bioprocess Technology,2015,8(8):1605−1615.
    [12]
    SUN J, ZHOU P, ZHOU W B, et al. A review on 3D printing for customized food fabrication[J]. Procedia Manufacturing,2015,1:308−319. doi: 10.1016/j.promfg.2015.09.057
    [13]
    MOTOKI K, PARK J, SPENCE C. Contextual acceptance of novel and unfamiliar foods: Insects, cultured meat, plant-based meat alternatives, and 3D printed foods[J]. Food Quality and Preference,2022,96:104368. doi: 10.1016/j.foodqual.2021.104368
    [14]
    LIPTON J I, CUTLER M, NIGL F, et al. Additive manufacturing for the food industry[J]. Trends in Food Science & Technology,2015,43(1):114−123.
    [15]
    周景文, 张国强, 赵鑫锐, 等. 未来食品的发展: 植物蛋白肉与细胞培养肉[J]. 食品与生物技术学报,2020,39(10):1−8. [ZHOU J W, ZHANG G Q, ZHAO X R, et al. Future of food: Plant-based and cell-cultured meat[J]. Journal of Food and Biotechnology,2020,39(10):1−8. doi: 10.3969/j.issn.1673-1689.2020.10.001
    [16]
    李柳婧. 食品3D打印技术引领烹饪方式与健康饮食新革命[J]. 黑龙江科学,2016,7(14):1−3. [LI L J. Food 3D print technique leads to the new revolution of cooking way and healthy diet[J]. Heilongjiang Science,2016,7(14):1−3. doi: 10.3969/j.issn.1674-8646.2016.14.001
    [17]
    延浩立, 郭韵, 何芃. 食品3D打印喷头流道有限元优化分析[J]. 计算机时代,2019(4):1−4,8. [YAN H L, GUO Y, HE P. Finite element optimization analysis of food 3D printing nozzle flow channel[J]. Computer Era,2019(4):1−4,8.
    [18]
    吴捍疆, 张丰收. 通用挤出型食品3D打印机的设计[J]. 轻工机械, 2020, 38(1): 75−78.

    WU H J, ZHANG F S. Design of general extruded food 3D printer[J]. Light Industry Machinery, 2020, 38(1): 75−78.
    [19]
    TENG X X, ZHANG M, MUJUMDAR A S. 4D printing: Recent advances and proposals in the food sector[J]. Trends in Food Science & Technology,2021,110:349−363. doi: 10.1016/j.jpgs.2021.01.076
    [20]
    刘倩楠, 张春江, 张良, 等. 食品3D打印技术的发展现状[J]. 农业工程学报,2018,34(16):265−273. [LIU Q N, ZHANG C J, ZHANG L, et al. Development status of 3D printing technology for food[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(16):265−273. doi: 10.11975/j.issn.1002-6819.2018.16.034
    [21]
    张鹏辉, 周浩宇, 聂远洋, 等. 原料特性及打印参数对食品3D打印制品品质的影响[J]. 食品与机械,2021,37(6):219−223. [ZHANG P H, ZHOU H Y, NIE Y Y, et al. Effects of raw material characteristics and printing parameters on product quality in food 3D printing[J]. Food and Machinery,2021,37(6):219−223.
    [22]
    GODOI F C, PRAKASH S, BHANDARI B R. 3D printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering,2016,179:44−54. doi: 10.1016/j.jfoodeng.2016.01.025
    [23]
    胡浩杰,田双起,赵仁勇,等.新资源可食用微藻的活性物质提取及其在食品中应用研究进展[J/OL].食品工业科技:1−12[2021-10-07]. https://doi.org/10.13386/j.issn1002-0306.2020060048

    HU H J, TIAN S Q, ZHAO R Y, et al. Research progress on the extraction of active substances from new resource edible microalgae and its application in food[J]. Science and Technology of Food Industry:1−12[2021-10-07]. https://doi.org/10.13386/j.issn1002-0306.2020060048.
    [24]
    戴妍, 范蓓, 卢嘉, 等. 蛋黄卵磷脂微胶囊性质研究[J]. 食品工业科技,2016,37(14):124−127. [DAI Y, FAN B, LU J, et al. Research on characteristics of egg lecithin microencapsules[J]. Science and Technology of Food Industry,2016,37(14):124−127.
    [25]
    XU Q, QIN H, YIN Z. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres[J]. Chemical Engineering Science,2013,104:330−346. doi: 10.1016/j.ces.2013.09.020
    [26]
    崔然然, 韩晨瑞, 孙慧娟, 等. 不同增稠剂对山楂酱3D打印效果的影响[J]. 食品与发酵工业,2021,47(9):136−142. [CUI R R, HAN C R, SUN H J, et al. Different type of thickener on the 3D printing performance of hawthorn jam[J]. Food and Fermentation Industries,2021,47(9):136−142.
    [27]
    TOHIC C L, O'SULLIVAN J J, DRAPALA K P, et al. Effect of 3D printing on the structure and textural properties of processed cheese[J]. Journal of Food Engineering,2018,220:56−64. doi: 10.1016/j.jfoodeng.2017.02.003
    [28]
    PEM D, JEEWON R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions-Narrative review article[J]. Iran J Public Health,2015,44(10):1309−1321.
    [29]
    CHEN Y Y, ZHANG M, PHUHONGSUNG P. 3D printing of protein-based composite fruit and vegetable gel system[J]. LWT-Food Science and Technology,2021,141:110978. doi: 10.1016/j.lwt.2021.110978
    [30]
    PIETRO R, RAMAIOLI M. Food 3D printing: Effect of heat transfer on print stability of chocolate[J]. Journal of Food Engineering,2021,294:110415. doi: 10.1016/j.jfoodeng.2020.110415
    [31]
    MANTIHAL S, PRAKASH S, GODOI F C, et al. Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling[J]. 2017, 44: 21−29.
    [32]
    周浩宇, 张鹏辉, 卢森, 等. 小麦面粉的3D打印特性[J/OL]. 食品科学: 1−13[2021-10-08]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210816.1603.095.html.

    ZHOU H Y, ZHANG P H, LU S, et al. 3D printing characteristics of wheat flours[J]. Food Science: 1−13[2021-10-08]. http://kns.cnki.net/kcms/detail/11.2206.TS. 20210816. 1603.095.html.
    [33]
    ZHENG L Y, LIU J B, LIU R, et al. 3D printing performance of gels from wheat starch, flour and whole meal[J]. Food Chemistry,2021,356:129546. doi: 10.1016/j.foodchem.2021.129546
    [34]
    YU D, WU L, REGENSTEIN J M, et al. Recent advances in quality retention of non-frozen fish and fishery products: A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(10):1747−1759. doi: 10.1080/10408398.2019.1596067
    [35]
    DE SMET S, VOSSEN E. Meat: The balance between nutrition and health. A review[J]. Meat Science,2016,120:145−156. doi: 10.1016/j.meatsci.2016.04.008
    [36]
    YANG G H, TAO Y, WANG P, et al. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product[J]. LWT-Food Science and Technology,2021:112693. doi: 10.1016/j.lwt.2021.112693
    [37]
    黄颖. 马鲛鱼鱼糜制品品质改良及其3D打印应用的研究[D]. 大连: 大连工业大学, 2019.

    HUANG Y. Research on quality improvement and 3D printing of Scomberomorus Niphonius surimi[J]. Dalian: Dalian Polytechnic University, 2019.
    [38]
    DONG X P, PAN Y X, ZHAO W Y, et al. Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi[J]. LWT-Food Science and Technology,2020,124:109123. doi: 10.1016/j.lwt.2020.109123
    [39]
    王江东, 帅晶晶, 罗仕园, 等. 明胶对酸奶3D打印性能的影响[J]. 食品与发酵工业,2021,47(17):194−199. [WANG J D, SHUAI J J, LUO S Y, et al. Effects of gelatin on 3D printing properties of yogurt[J]. Food and Fermentation Industries,2021,47(17):194−199.
    [40]
    RIANTINGTYAS R R, SAGER V F, CHOW C Y, et al. 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties[J]. Food Research International,2021,147:110517. doi: 10.1016/j.foodres.2021.110517
    [41]
    LIU L L, MENG Y Y, DAI X N, et al. 3D printing complex egg white protein objects: Properties and optimization[J]. Food and Bioprocess Technology,2019,12:267−279. doi: 10.1007/s11947-018-2209-z
    [42]
    KIM S M, KIM H W, PARK H J. Preparation and characterization of surimi-based imitation crab meat using coaxial extrusion three-dimensional food printing[J]. Innovative Food Science & Emerging Technologies,2021,71:102711. doi: 10.1016/j.ifset.2021.102711
    [43]
    潘禹希, 于婉莹, 赵文宇, 等. 鲢鱼糜和海参复配3D打印食品材料[J]. 现代食品科技,2020,36(8):175−183. [PAN Y X, YU W Y, ZHAO W Y, et al. 3D printing food materials made with Hypophthalmichthys molitrix surimi and sea cucumber pulp[J]. Modern Food Science and Technology,2020,36(8):175−183.
    [44]
    周光宏, 丁世杰, 徐幸莲. 培养肉的研究进展与挑战[J]. 中国食品学报,2020,20(5):1−11. [ZHOU G H, DING S J, XU X L. Progress and challenges in cultured meat[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(5):1−11.
    [45]
    ARSHAD M S, JAVED M, SOHAIB M, et al. Tissue engineering approaches to develop cultured meat from cells: A mini review[J]. Cogent Food & Agriculture,2017,3(1):1320814.
    [46]
    ZHU W, MA X, GOU M, et al. 3D printing of functional biomaterials for tissue engineering[J]. Current Opinion in Biotechnology,2016,40:103−112. doi: 10.1016/j.copbio.2016.03.014
    [47]
    BOUKID F. Plant-based meat analogues: From niche to mainstream[J]. European Food Research and Technology,2021,247:297−308. doi: 10.1007/s00217-020-03630-9
    [48]
    GUAN X, LEI Q Z, YAN Q Y, et al. Trends and ideas in technology, regulation and public acceptance of cultured meat[J]. Future Foods,2021,3:100032. doi: 10.1016/j.fufo.2021.100032
    [49]
    POST M J. Cultured meat from stem cells: Challenges and prospects[J]. Meat Science,2012,92(3):297−301. doi: 10.1016/j.meatsci.2012.04.008
    [50]
    ZHANG J, LIU L, LIU H, et al. Changes in conformation and quality of vegetable protein during texturization process by extrusion[J]. Critical Reviews in Food Science and Nutrition,2019,59(20):3267−3280. doi: 10.1080/10408398.2018.1487383
    [51]
    HUAN Z, CHU H K, LIU H, et al. Engineered bone scaffolds with dielectrophoresis-based patterning using 3D printing[J]. Biomedical Microdevices,2017,19(4):101−104. doi: 10.1007/s10544-017-0244-6
    [52]
    LIU Z B, ZHANG M, BHANDARI B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology,2017,69(A):83−94.
    [53]
    BURKE-SHYNE S, GALLEGOS D, WILLIAMS T. 3D food printing: Nutrition opportunities and challenges[J]. British Food Journal, 2020, 123(2): 649−663.
    [54]
    SHAHRUBUDIN N, LEE T C, RAMLAN R. An overview on 3D printing technology: Technological, materials, and applications[J]. Procedia Manufacturing,2019,35:1286−1296. doi: 10.1016/j.promfg.2019.06.089
    [55]
    HURST E J. 3D printing in healthcare: Emerging applications[J]. Journal of Hospital Librarianship,2016,16(3):255−267. doi: 10.1080/15323269.2016.1188042
    [56]
    DEROSSI A, CAPORIZZI R, AZZOLLINI D, et al. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children[J]. Journal of Food Engineering,2018,220:65−75. doi: 10.1016/j.jfoodeng.2017.05.015
  • Related Articles

    [1]PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230
    [2]KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273
    [3]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [4]Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120
    [5]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [6]LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148
    [7]ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205
    [8]Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197
    [9]Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339
    [10]GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072
  • Cited by

    Periodical cited type(13)

    1. 陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
    2. 雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
    3. 张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
    4. 杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
    7. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    8. 余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
    9. 张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
    10. 张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
    11. 付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
    12. 岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
    13. Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (993) PDF downloads (177) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return