Citation: | TANG Jingyi, ZHOU Fang, ZENG Hongzhe, et al. Recent Advances in Research on Functional Ingredients in Tea that Can Prevent Alzheimer Disease[J]. Science and Technology of Food Industry, 2022, 43(17): 501−513. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100205. |
[1] |
国家统计局. 国家数据: 年度数据[DB/OL]. 北京市西城区月坛南街57号(100826). 国家统计局. 2020. [2021.6.15]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0305&sj=2020.
National Bureau of Statistics. National date: Annual data[DB/OL]. 57 Yuetan South Street, Xicheng District, Peking (100826). National Bureau of Statistics. 2020. [2021.6.15]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0305&sj=2020.
|
[2] |
王英全, 梁景宏, 贾瑞霞, 等. 2020-2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病,2019,2(1):289−298. [WANG Y Q, LIANG J H, JIA R X, et al. Alzheimer disease in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Alzheimer's Disease and Related Diseases,2019,2(1):289−298. doi: 10.3969/j.issn.2096-5516.2019.01.012
WANG Y Q, LIANG J H, JIA R X, et al. Alzheimer disease in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Alzheimer's Disease and Related Diseases, 2019, 2(1): 289-298. doi: 10.3969/j.issn.2096-5516.2019.01.012
|
[3] |
李玉林, 步宏, 李一雷. 病理学[M]. 第9版. 北京: 人民卫生出版社, 2018: 324−325.
LI Y L, BU H, LI Y L. Pathology[M]. 9th ed. Peking: People's Medical Publishing House, 2018: 324−325.
|
[4] |
KUMAR D, GANESHPURKAR A, KUMAR D, et al. Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead[J]. Eur J Med Chem,2018,148:436−452. doi: 10.1016/j.ejmech.2018.02.035
|
[5] |
GODYN J, JONCZYK J, PANEK D, et al. Therapeutic strategies for Alzheimer's disease in clinical trials[J]. Pharmacol Rep,2016,68(1):127−138. doi: 10.1016/j.pharep.2015.07.006
|
[6] |
HU N, YU J T, TAN L, et al. Nutrition and the risk of Alzheimer's disease[J]. Biomed Res Int,2013,2013:524820.
|
[7] |
KURIYAMA S, HOZAWA A, OHMORI K, et al. Green tea consumption and cognitive function: A cross-sectional study from the Tsurugaya project 1[J]. Am J Clin Nutr,2006,83(2):355−361. doi: 10.1093/ajcn/83.2.355
|
[8] |
NOGUCHI-SHINOHARA M, YUKI S, DOHMOTO C, et al. Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline[J]. PLoS One,2014,9(5):e96013. doi: 10.1371/journal.pone.0096013
|
[9] |
NG T P, FENG L, NITI M, et al. Tea consumption and cognitive impairment and decline in older Chinese adults[J]. Am J Clin Nutr,2008,88(1):224−231. doi: 10.1093/ajcn/88.1.224
|
[10] |
LEE J W, LEE Y K, BAN J O, et al. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice[J]. J Nutr,2009,139(10):1987−1993. doi: 10.3945/jn.109.109785
|
[11] |
GUO Y, ZHAO Y, NAN Y, et al. (-)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer's disease[J]. Neuroreport,2017,28(10):590−597. doi: 10.1097/WNR.0000000000000803
|
[12] |
阳衡. L-茶氨酸对SAMP8小鼠脑神经元的保护作用研究[D]. 长沙: 湖南农业大学, 2017: 1−3.
YANG H. Protective effects of theanine on brain neurons in SAMP8 mouse[D]. Changsha: Hunan Agricultural University, 2017: 1−3.
|
[13] |
BEN P, ZHANG Z, ZHU Y, et al. l-Theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation[J]. Neurotoxicology,2016,57:95−103. doi: 10.1016/j.neuro.2016.09.010
|
[14] |
ARENDASH G W, SCHLEIF W, REZAI-ZADEH K, et al. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production[J]. Neuroscience,2006,142(4):941−952. doi: 10.1016/j.neuroscience.2006.07.021
|
[15] |
PRASANTHI J R, DASARI B, MARWARHA G, et al. Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet[J]. Free Radic Biol Med,2010,49(7):1212−1220. doi: 10.1016/j.freeradbiomed.2010.07.007
|
[16] |
LI X, SMID S D, LIN J, et al. Neuroprotective and anti-amyloid beta effect and main chemical profiles of white tea: Comparison against green, oolong and black tea[J]. Molecules,2019,24(10):1926. doi: 10.3390/molecules24101926
|
[17] |
张静. 茶黄素对阿尔茨海默病模型的神经保护作用研究[D]. 长沙: 湖南农业大学, 2017: 1.
ZHANG J. Neuroprotective effect of theaflavins on Alzheimer's disease model[D]. Changsha: Hunan Agricultural University, 2017: 1.
|
[18] |
KHAN M I, SHIN J H, KIM M Y, et al. Green tea seed isolated Theasaponin E1 ameliorates AD promoting neurotoxic pathogenesis by attenuating abeta peptide levels in SweAPP N2a cells[J]. Molecules,2020,25(10):2334. doi: 10.3390/molecules25102334
|
[19] |
HYMAN B T, PHELPS C H, BEACH T G, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease[J]. Alzheimers Dement,2012,8(1):1−13. doi: 10.1016/j.jalz.2011.10.007
|
[20] |
ITTNER L M, GOTZ J. Amyloid-beta and tau-a toxic pas de deux in Alzheimer's disease[J]. Nat Rev Neurosci,2011,12(2):65−72.
|
[21] |
UTTARA B, SINGH A V, ZAMBONI P, et al. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options[J]. Curr Neuropharmacol,2009,7(1):65−74. doi: 10.2174/157015909787602823
|
[22] |
BUTTERFIELD D A, CASTEGNA A, LAUDERBACK C M, et al. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death[J]. Neurobiol Aging,2002,23(5):655−664. doi: 10.1016/S0197-4580(01)00340-2
|
[23] |
AKIYAMA H, BARGER S, BARNUM S, et al. Inflammation and Alzheimer's disease[J]. Neurobiol Aging,2000,21(3):383−421. doi: 10.1016/S0197-4580(00)00124-X
|
[24] |
SISODIA S S, ST GEORGE-HYSLOP P H. gamma-Secretase, notch, abeta and Alzheimer's disease: Where do the presenilins fit in?[J]. Nat Rev Neurosci,2002,3(4):281−290. doi: 10.1038/nrn785
|
[25] |
PASSER B, PELLEGRINI L, RUSSO C, et al. Generation of an apoptotic intracellular peptide by gamma-secretase cleavage of Alzheimer's amyloid beta protein precursor[J]. J Alzheimers Dis,2000,2(3-4):289−301. doi: 10.3233/JAD-2000-23-408
|
[26] |
ZHANG Z X, LI Y B, ZHAO R P. Epigallocatechin gallate attenuates beta-amyloid generation and oxidative stress involvement of PPARgamma in N2a/APP695 cells[J]. Neurochem Res,2017,42(2):468−480. doi: 10.1007/s11064-016-2093-8
|
[27] |
JEON S Y, BAE K, SEONG Y H, et al. Green tea catechins as a BACE1 (beta-secretase) inhibitor[J]. Bioorg Med Chem Lett,2003,13(22):3905−3908. doi: 10.1016/j.bmcl.2003.09.018
|
[28] |
LIM H J, SHIM S B, JEE S W, et al. Green tea catechin leads to global improvement among Alzheimer's disease-related phenotypes in NSE/hAPP-C105 Tg mice[J]. J Nutr Biochem,2013,24(7):1302−1213. doi: 10.1016/j.jnutbio.2012.10.005
|
[29] |
MOCKETT B G, GUEVREMONT D, ELDER M K, et al. Glutamate receptor trafficking and protein synthesis mediate the facilitation of LTP by secreted amyloid precursor protein-alpha[J]. J Neurosci,2019,39(17):3188−3203. doi: 10.1523/JNEUROSCI.1826-18.2019
|
[30] |
LEVITES Y, AMIT T, MANDEL S, et al. Neuroprotection and neurorescue against abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate[J]. FASEB J,2003,17(8):952−954.
|
[31] |
SHAO C Y, CRARY J F, RAO C, et al. Atypical protein kinase C in neurodegenerative disease II: PKCiota/lambda in tauopathies and alpha-synucleinopathies[J]. J Neuropathol Exp Neurol,2006,65(4):327−335. doi: 10.1097/01.jnen.0000218441.00040.82
|
[32] |
郎尉雅, 刘忠锦, 张海燕, 等. 表没食子儿茶素没食子酸酯对APP/PS1双转基因小鼠神经元突触可塑性和神经细胞黏附分子表达的影响[J]. 解剖学报,2020,51(4):495−501. [LANG W Y, LIU Z J, ZHANG H Y, et al. Effect of epigallocatechin gallate on expressions of synaptic plasticity and neural cell adhesion molecules in APP/PS1 double transgenic mice[J]. Acta Anatomica Sinica (Acta Anat Sin),2020,51(4):495−501. doi: 10.16098/j.issn.0529-1356.2020.04.004
LANG W Y, LIU Z J, ZHANG H Y, et al. Effect of epigallocatechin gallate on expressions of synaptic plasticity and neural cell adhesion molecules in APP /PS1 double transgenic mice[J]. Acta Anatomica Sinica (Acta Anat Sin), 2020, 51(4): 495-501. doi: 10.16098/j.issn.0529-1356.2020.04.004
|
[33] |
OBREGON D F, REZAI-ZADEH K, BAI Y, et al. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein[J]. J Biol Chem,2006,281(24):16419−16427. doi: 10.1074/jbc.M600617200
|
[34] |
MORI T, KOYAMA N, YOKOO T, et al. Gallic acid is a dual alpha/beta-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice[J]. J Biol Chem,2020,295(48):16251−16266. doi: 10.1074/jbc.RA119.012330
|
[35] |
HE M, LIU M Y, WANG S, et al. Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs[J]. Zhong Yao Cai,2012,35(10):1641−1644.
|
[36] |
REZNICHENKO L, AMIT T, ZHENG H, et al. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: Implications for iron chelation in Alzheimer's disease[J]. J Neurochem,2006,97(2):527−536. doi: 10.1111/j.1471-4159.2006.03770.x
|
[37] |
LEISSRING M A. Abeta-degrading proteases: Therapeutic potential in Alzheimer disease[J]. CNS Drugs,2016,30(8):667−675. doi: 10.1007/s40263-016-0364-1
|
[38] |
YAMAMOTO N, SHIBATA M, ISHIKURO R, et al. Epigallocatechin gallate induces extracellular degradation of amyloid beta-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways[J]. Neuroscience,2017,362:70−78. doi: 10.1016/j.neuroscience.2017.08.030
|
[39] |
GAN L, MENG Z J, XIONG R B, et al. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice[J]. Acta Pharmacol Sin,2015,36(5):597−605. doi: 10.1038/aps.2015.11
|
[40] |
MELZIG M F, JANKA M. Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract[J]. Phytomedicine,2003,10(6-7):494−498. doi: 10.1078/094471103322331449
|
[41] |
LIU Z, NAKAMURA T, MUNEMASA S, et al. Galloylated catechins as potent inhibitors of angiotensin converting enzyme[J]. Food Science and Technology Research,2016,22(6):847−851. doi: 10.3136/fstr.22.847
|
[42] |
SAVASKAN E, HOCK C, OLIVIERI G, et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia[J]. Neurobiol Aging,2001,22(4):541−546. doi: 10.1016/S0197-4580(00)00259-1
|
[43] |
REZAI-ZADEH K, ARENDASH G W, HOU H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice[J]. Brain Res,2008,1214:177−187. doi: 10.1016/j.brainres.2008.02.107
|
[44] |
WANG S H, LIU F F, DONG X Y, et al. Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (-)-epigallocatechin-3-gallate[J]. J Phys Chem B,2010,114(35):11576−11583. doi: 10.1021/jp1001435
|
[45] |
ZHAN C, CHEN Y, TANG Y, et al. Green tea extracts EGCG and EGC display distinct mechanisms in disrupting abeta42 protofibril[J]. ACS Chem Neurosci,2020,11(12):1841−1851. doi: 10.1021/acschemneuro.0c00277
|
[46] |
LIU Y, LIU Y, WANG S H, et al. Structural characteristics of (-)-epigallocatechin-3-gallate inhibiting amyloid a beta 42 aggregation and remodeling amyloid fibers[J]. Rsc Advances,2015,5(77):62402−62413. doi: 10.1039/C5RA09608A
|
[47] |
RHO T, CHOI M S, JUNG M, et al. Identification of fermented tea (Camellia sinensis) polyphenols and their inhibitory activities against amyloid-beta aggregation[J]. Phytochemistry,2019,160:11−18. doi: 10.1016/j.phytochem.2018.12.013
|
[48] |
ATWOOD C S, OBRENOVICH M E, LIU T, et al. Amyloid-beta: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-beta[J]. Brain Res Brain Res Rev,2003,43(1):1−16. doi: 10.1016/S0165-0173(03)00174-7
|
[49] |
LOVELL M A, ROBERTSON J D, TEESDALE W J, et al. Copper, iron and zinc in Alzheimer's disease senile plaques[J]. J Neurol Sci,1998,158(1):47−52. doi: 10.1016/S0022-510X(98)00092-6
|
[50] |
CHEN T T, YANG Y F, ZHU S J, et al. Inhibition of a beta aggregates in Alzheimer's disease by epigallocatechin and epicatechin-3-gallate from green tea[J]. Bioorganic Chemistry,2020,105:104382. doi: 10.1016/j.bioorg.2020.104382
|
[51] |
ROGERS J T, RANDALL J D, CAHILL C M, et al. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript[J]. J Biol Chem,2002,277(47):45518−45528. doi: 10.1074/jbc.M207435200
|
[52] |
AVRAMOVICH-TIROSH Y, AMIT T, BAR-AM O, et al. Physiological and pathological aspects of a beta in iron homeostasis via 5' UTR in the APP mRNA and the therapeutic use of iron-chelators[J]. Bmc Neuroscience, 2008, 9 (Suppl 2): S2.
|
[53] |
AVRAMOVICH-TIROSH Y, REZNICHENKO L, MIT T, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG[J]. Curr Alzheimer Res,2007,4(4):403−411. doi: 10.2174/156720507781788927
|
[54] |
HYUNG S J, DETOMA A S, BRENDER J R, et al. Insights into antiamyloidogenic properties of the green tea extract (-)-epigallocatechin-3-gallate toward metal-associated amyloid-beta species[J]. Proc Natl Acad Sci USA,2013,110(10):3743−3748. doi: 10.1073/pnas.1220326110
|
[55] |
ZHENG Q, KEBEDE M T, KEMEH M M, et al. Inhibition of the self-assembly of abeta and of tau by polyphenols: Mechanistic studies[J]. Molecules,2019,24(12):2316. doi: 10.3390/molecules24122316
|
[56] |
IQBAL K, GRUNDKE-IQBAL I. Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: A personal historical perspective[J]. J Alzheimers Dis,2006,9(3 Suppl):219−242.
|
[57] |
STRANG K H, CROFT C L, SORRENTINO Z A, et al. Distinct differences in prion-like seeding and aggregation between tau protein variants provide mechanistic insights into tauopathies[J]. J Biol Chem,2018,293(7):2408−2421. doi: 10.1074/jbc.M117.815357
|
[58] |
LI H, WU X, WU Q, et al. Green tea polyphenols protect against okadaic acid-induced acute learning and memory impairments in rats[J]. Nutrition,2014,30(3):337−342. doi: 10.1016/j.nut.2013.08.021
|
[59] |
LIN C L, CHEN T F, CHIU M J, et al. Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation[J]. Neurobiol Aging,2009,30(1):81−92. doi: 10.1016/j.neurobiolaging.2007.05.012
|
[60] |
XU Y H, CHEN Y, ZHANG P, et al. Structure of a protein phosphatase 2A holoenzyme: Insights into B55-mediated tau dephosphorylation[J]. Molecular Cell,2008,31(6):873−885. doi: 10.1016/j.molcel.2008.08.006
|
[61] |
JIA N, HAN K, KONG J J, et al. (-)-Epigallocatechin-3-gallate alleviates spatial memory impairment in APP/PS1 mice by restoring IRS-1 signaling defects in the hippocampus[J]. Mol Cell Biochem,2013,380(1-2):211−218. doi: 10.1007/s11010-013-1675-x
|
[62] |
GUEROUX M, FLEAU C, SLOZECK M, et al. Epigallocatechin 3-Gallate as an inhibitor of tau phosphorylation and aggregation: A molecular and structural insight[J]. J Prev Alzheimers Dis,2017,4(4):218−225.
|
[63] |
CHESSER A S, GANESHAN V, YANG J, et al. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons[J]. Nutr Neurosci,2016,19(1):21−31. doi: 10.1179/1476830515Y.0000000038
|
[64] |
孙承艳, 贾宁, 韩锟. 表没食子儿茶素没食子酸酯对APP/PS1转基因小鼠认知功能和海马自噬的影响[J]. 中国药理学通报,2020,36(4):539−543. [SUN C Y, JIA N, HAN K. Effects of epigallocatechin-3-gallate on cognitive function and hippocampal autophagy in APP/PSl transgenic mice[J]. Chinese Pharmacological Bulletin,2020,36(4):539−543. doi: 10.3969/j.issn.1001-1978.2020.04.017
SUN C Y, JIA N, HAN K. Effects of epigallocatechin-3-gallate on cognitive function and hippocampal autophagy in APP/PSl transgenic mice[J]. Chinese Pharmacological Bulletin, 2020, 36(4): 539-543. doi: 10.3969/j.issn.1001-1978.2020.04.017
|
[65] |
WOBST H J, SHARMA A, DIAMOND M I, et al. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios[J]. FEBS Lett,2015,589(1):77−83. doi: 10.1016/j.febslet.2014.11.026
|
[66] |
SONAWANE S K, CHIDAMBARAM H, BORAL D, et al. EGCG impedes human tau aggregation and interacts with tau[J]. Sci Rep,2020,10(1):12579. doi: 10.1038/s41598-020-69429-6
|
[67] |
YAO J, GAO X, SUN W, et al. Molecular hairpin: A possible model for inhibition of tau aggregation by tannic acid[J]. Biochemistry,2013,52(11):1893−902. doi: 10.1021/bi400240c
|
[68] |
YIN X, JIN N, SHI J, et al. Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn down syndrome mice[J]. Sci Rep,2017,7(1):619. doi: 10.1038/s41598-017-00682-y
|
[69] |
BARTUS R T. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis[J]. Exp Neurol,2000,163(2):495−529. doi: 10.1006/exnr.2000.7397
|
[70] |
GREIG N H, UTSUKI T, YU Q, et al. A new therapeutic target in Alzheimer's disease treatment: Attention to butyrylcholinesterase[J]. Curr Med Res Opin,2001,17(3):159−165. doi: 10.1185/03007990152673800
|
[71] |
KIM H K, KIM M, KIM S, et al. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities[J]. Biosci Biotechnol Biochem,2004,68(9):1977−1979. doi: 10.1271/bbb.68.1977
|
[72] |
OKELLO E J, MATHER J. Comparative kinetics of acetyl- and butyryl-cholinesterase inhibition by green tea catechins relevance to the symptomatic treatment of Alzheimer's disease[J]. Nutrients,2020,12(4):1090. doi: 10.3390/nu12041090
|
[73] |
ALI B, JAMAL Q M, SHAMS S, et al. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer's disease treatment[J]. CNS Neurol Disord Drug Targets,2016,15(5):624−628. doi: 10.2174/1871527315666160321110607
|
[74] |
YATIN S M, VARADARAJAN S, LINK C D, et al. In vitro and in vivo oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42)[J]. Neurobiol Aging, 1999, 20(3): 325−330, 339−342.
|
[75] |
TAMAGNO E, BARDINI P, OBBILI A, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons[J]. Neurobiol Dis,2002,10(3):279−288. doi: 10.1006/nbdi.2002.0515
|
[76] |
SHIMMYO Y, KIHARA T, AKAIKE A, et al. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation[J]. Neuroreport,2008,19(13):1329−1333. doi: 10.1097/WNR.0b013e32830b8ae1
|
[77] |
SCAPAGNINI G, VASTO S, ABRAHAM N G, et al. Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders[J]. Mol Neurobiol,2011,44(2):192−201. doi: 10.1007/s12035-011-8181-5
|
[78] |
AGOSTINHO P, CUNHA R A, OLIVEIRA C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease[J]. Curr Pharm Des,2010,16(25):2766−2778. doi: 10.2174/138161210793176572
|
[79] |
YAMAMOTO M, KIYOTA T, HORIBA M, et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice[J]. Am J Pathol,2007,170(2):680−692. doi: 10.2353/ajpath.2007.060378
|
[80] |
ZHONG X, LIU M, YAO W, et al. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-kappaB pathway[J]. Mol Nutr Food Res,2019,63(21):e1801230. doi: 10.1002/mnfr.201801230
|
[81] |
LEE Y J, CHOI D Y, YUN Y P, et al. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties[J]. J Nutr Biochem,2013,24(1):298−310. doi: 10.1016/j.jnutbio.2012.06.011
|
[82] |
BAO J, LIU W, ZHOU H Y, et al. Epigallocatechin-3-gallate alleviates cognitive deficits in APP/PS1 mice[J]. Curr Med Sci,2020,40(1):18−27. doi: 10.1007/s11596-020-2142-z
|
[83] |
LIN M T, BEAL M F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases[J]. Nature,2006,443(7113):787−795. doi: 10.1038/nature05292
|
[84] |
DRAGICEVIC N, SMITH A, LIN X Y, et al. Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction[J]. Journal of Alzheimers Disease,2011,26(3):507−521. doi: 10.3233/JAD-2011-101629
|
[85] |
张玉森, 董瑞瑞, 杨倩, 等. 茶多酚联合原花青素改善AD大鼠记忆作用及机制[J]. 中国公共卫生,2019,35(3):304−308. [ZHANG Y S, DONG R R, YANG Q, et al. Effect and mechanism of tea polyphenols combined with proanthocyanidins on memory improvement in AD model rats[J]. Chinese Journal of Public Health,2019,35(3):304−308. doi: 10.11847/zgggws1121357
ZHANG Y S, DONG R R, YANG Q, et al. Effect and mechanism of tea polyphenols combined with proanthocyanidins on memory improvement in AD model rats[J]. Chinese Journal of Public Health, 2019, 35(3): 304-308. doi: 10.11847/zgggws1121357
|
[86] |
ANSARI N, KHODAGHOLI F. Molecular mechanism aspect of ER stress in Alzheimer's disease: Current approaches and future strategies[J]. Curr Drug Targets,2013,14(1):114−122. doi: 10.2174/138945013804806532
|
[87] |
DU K, LIU M, ZHONG X, et al. Epigallocatechin gallate reduces amyloid beta-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis[J]. Mol Nutr Food Res,2018,62(8):e1700890. doi: 10.1002/mnfr.201700890
|
[88] |
ANDRADE V, CORTES N, PASTOR G, et al. N-acetyl cysteine and catechin-derived polyphenols: A path toward multi-target compounds against Alzheimer's disease[J]. J Alzheimers Dis,2020,75(4):1219−1227. doi: 10.3233/JAD-200067
|
[89] |
CANO A, ETTCHETO M, CHANG J H, et al. Dual-drug loaded nanoparticles of epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model[J]. J Control Release,2019,301:62−75. doi: 10.1016/j.jconrel.2019.03.010
|
[90] |
SMITH A, GIUNTA B, BICKFORD P C, et al. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease[J]. Int J Pharm,2010,389(1-2):207−212. doi: 10.1016/j.ijpharm.2010.01.012
|
[91] |
杨鹏, 郭倩, 许舒婷, 等. 靶向脑淀粉斑的载EGCG纳米递释系统的构建及其治疗阿尔茨海默病小鼠的研究[J]. 四川大学学报 (医学版),2021,52(4):605−611. [YANG P, GUO Q, XU S T, et al. Constructing brain Aβ-targeting nanoparticles loaded with EGCG for treating Alzheimer’s disease in mice[J]. Journal of Sichuan University (Medical Science Edition),2021,52(4):605−611.
YANG P, GUO Q, XU S T, et al. Constructing brain Aβ-targeting nanoparticles loaded with EGCG for treating Alzheimer’s disease in mice[J]. Journal of Sichuan University (Medical Science Edition), 2021, 52(4): 605-611.
|
[92] |
MORI T, KOYAMA N, TAN J, et al. Combined treatment with the phenolics (-)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice[J]. J Biol Chem,2019,294(8):2714−2731. doi: 10.1074/jbc.RA118.004280
|
[93] |
WALKER J M, KLAKOTSKAIA D, AJIT D, et al. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer's disease mouse model[J]. J Alzheimers Dis,2015,44(2):561−572. doi: 10.3233/JAD-140981
|
[94] |
GIUNTA B, HOU H, ZHU Y, et al. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice[J]. Neurosci Lett,2010,471(3):134−138. doi: 10.1016/j.neulet.2010.01.026
|
[95] |
DONG YEON YUK, TAE IL KIM, SANG GI PARK, et al. Improvement of memory impairment by L-theanine through inhibition of acetylcholinesterase activityin mice[J]. Yakhak Hoeji,2007,51(6):409−414.
|
[96] |
KIM T I, LEE Y K, PARK S G, et al. l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: Reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways[J]. Free Radic Biol Med,2009,47(11):1601−1610. doi: 10.1016/j.freeradbiomed.2009.09.008
|
[97] |
NAKAMURA T, OH C K, LIAO L J, et al. Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer's disease[J]. Science,2021,371(6526):eaaw0843. doi: 10.1126/science.aaw0843
|
[98] |
DI X, YAN J, ZHAO Y, et al. L-theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway[J]. Neuroscience,2010,168(3):778−786. doi: 10.1016/j.neuroscience.2010.04.019
|
[99] |
PARK S, KIM D S, KANG S, et al. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-beta-infused rats[J]. Nutr Res,2018,60:116−131. doi: 10.1016/j.nutres.2018.09.010
|
[100] |
KOCH G, DI LORENZO F, BONNI S, et al. Dopaminergic modulation of cortical plasticity in Alzheimer's disease patients[J]. Neuropsychopharmacology,2014,39(11):2654−2661. doi: 10.1038/npp.2014.119
|
[101] |
ZHU G, YANG S, XIE Z, et al. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice[J]. Neuropharmacology,2018,138:331−340. doi: 10.1016/j.neuropharm.2018.06.030
|
[102] |
WU Z, ZHU Y, CAO X, et al. Mitochondrial toxic effects of abeta through mitofusins in the early pathogenesis of Alzheimer's disease[J]. Mol Neurobiol,2014,50(3):986−996. doi: 10.1007/s12035-014-8675-z
|
[103] |
CUNHA G M, CANAS P M, MELO C S, et al. Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801[J]. Exp Neurol,2008,210(2):776−781. doi: 10.1016/j.expneurol.2007.11.013
|
[104] |
AYOUB S, MELZIG M F. Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea[J]. J Pharm Pharmacol,2006,58(4):495−501.
|
[105] |
PEARSE D D, PEREIRA F C, MARCILLO A E, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury[J]. Nat Med,2004,10(6):610−616. doi: 10.1038/nm1056
|
[106] |
GUPTA S, DASMAHAPATRA A K. Caffeine destabilizes preformed abeta protofilaments: Insights from all atom molecular dynamics simulations[J]. Phys Chem Chem Phys,2019,21(39):22067−22080. doi: 10.1039/C9CP04162A
|
[107] |
DU F, ZHOU L, JIAO Y, et al. Ingredients in Zijuan pu'er tea extract alleviate beta-amyloid peptide toxicity in a caenorhabditis elegans model of Alzheimer's disease likely through DAF-16[J]. Molecules,2019,24(4):729. doi: 10.3390/molecules24040729
|
[108] |
LAURENT C, EDDARKAOUI S, DERISBOURG M, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology[J]. Neurobiol Aging,2014,35(9):2079−2090. doi: 10.1016/j.neurobiolaging.2014.03.027
|
[109] |
JOHNSON D A, ULUS I H, WURTMAN R J. Caffeine potentiates the enhancement by choline of striatal acetylcholine release[J]. Life Sci,1992,51(20):1597−1601. doi: 10.1016/0024-3205(92)90622-V
|
[110] |
POHANKA M, DOBES P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase[J]. Int J Mol Sci,2013,14(5):9873−9882. doi: 10.3390/ijms14059873
|
[111] |
FABIANI C, MURRAY A P, CORRADI J, et al. A novel pharmacological activity of caffeine in the cholinergic system[J]. Neuropharmacology,2018,135:464−473. doi: 10.1016/j.neuropharm.2018.03.041
|
[112] |
GOVINDPANI K, CALVO-FLORES GUZMAN B, VINNAKOTA C, et al. Towards a better understanding of GABAergic remodeling in Alzheimer's disease[J]. Int J Mol Sci,2017,18(8):1813. doi: 10.3390/ijms18081813
|
[113] |
YANG S, LIU W, LU S, et al. A novel multifunctional compound camellikaempferoside B decreases abeta production, interferes with abeta aggregation, and prohibits abeta-mediated neurotoxicity and neuroinflammation[J]. ACS Chem Neurosci,2016,7(4):505−518. doi: 10.1021/acschemneuro.6b00091
|
[114] |
KAN Z, WANG Y, CHEN Q, et al. Green tea suppresses amyloid beta levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD mice[J]. Mol Nutr Food Res,2021,65(19):e2100626. doi: 10.1002/mnfr.202100626
|
[115] |
JO Y H, YUK H G, LEE J H, et al. Antioxidant, tyrosinase inhibitory, and acetylcholinesterase inhibitory activities of green tea (Camellia sinensis L.) seed and its pericarp[J]. Food Science and Biotechnology,2012,21(3):761−768. doi: 10.1007/s10068-012-0099-9
|
[116] |
KIM J M, PARK S K, KANG J Y, et al. Green tea seed oil suppressed abeta1(-)42-induced behavioral and cognitive deficit via the abeta-related Akt pathway[J]. Int J Mol Sci,2019,20(8):1865. doi: 10.3390/ijms20081865
|
[117] |
TAKAHASHI A, WATANABE T, FUJITA T, et al. Green tea aroma fraction reduces beta-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human beta-amyloid minigene[J]. Biosci Biotechnol Biochem,2014,78(7):1206−1211. doi: 10.1080/09168451.2014.921553
|
[118] |
HIMENO E, OHYAGI Y, MA L, et al. Apomorphine treatment in Alzheimer mice promoting amyloid-beta degradation[J]. Ann Neurol,2011,69(2):248−256. doi: 10.1002/ana.22319
|
[119] |
AULD D S, KAR S, QUIRION R. Beta-amyloid peptides as direct cholinergic neuromodulators: A missing link?[J]. Trends Neurosci,1998,21(1):43−49. doi: 10.1016/S0166-2236(97)01144-2
|
[120] |
MCALPINE C S, PARK J, GRICIUC A, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease[J]. Nature,2021,595(7869):701−706. doi: 10.1038/s41586-021-03734-6
|
[121] |
彭云, 李果, 刘学艳, 等. 红茶中茶黄素的保健功效及机理研究进展[J]. 茶叶通讯,2020,47(2):198−203. [PENG Y, LI G, LIU X Y, et al. Research progress on health benefits and mechanism of theaflavins in black tea[J]. Journal of Tea Communication,2020,47(2):198−203. doi: 10.3969/j.issn.1009-525X.2020.02.004
PENG Y, LI G, LIU X Y, et al. Research progress on health benefits and mechanism of theaflavins in black tea[J]. Journal of Tea Communication, 2020, 47(2): 198-203. doi: 10.3969/j.issn.1009-525X.2020.02.004
|
[122] |
YANG W S, KO J, KIM E, et al. 21-O-angeloyltheasapogenol E3, a novel triterpenoid saponin from the seeds of tea plants, inhibits macrophage-mediated inflammatory responses in a NF-kappaB-dependent manner[J]. Mediators Inflamm,2014,2014:658351.
|
1. |
罗密,尹旺,郭崇韬,邓仁菊,付梅,包维嘉. 不同品种甘薯的淀粉结构与理化特性. 贵州农业科学. 2025(01): 10-17 .
![]() | |
2. |
罗密,尹旺,邓仁菊,关郁芳,潘牧,吴巧玉,付梅. 基于主成分分析和聚类分析对不同品种甘薯淀粉与粉条品质的综合评价. 食品工业科技. 2025(04): 246-257 .
![]() | |
3. |
金喜龙,丁杨,王中利,孟新莉,李斌. 糯质高粱酿造凤香型白酒初探. 酿酒. 2025(02): 109-113 .
![]() | |
4. |
罗密,郭崇韬,关郁芳,尹旺,邓仁菊,包维嘉. 不同紫甘薯品种淀粉理化特性的比较分析. 粮食与油脂. 2025(04): 21-27+75 .
![]() | |
5. |
盛周杨,邹波,吴继军,肖更生,徐玉娟,余元善,陈晓维,钟思彦. 木薯淀粉和改性淀粉结构特性及其与粉圆品质的关系. 广东农业科学. 2024(01): 127-135 .
![]() | |
6. |
宋永,贾璐泽,张一婷,刘佳莉,刘大军,孙庆申. 金冠豆角籽粒淀粉组成及性质研究. 食品工业科技. 2024(07): 59-67 .
![]() | |
7. |
莫祥秋,张明波,窦德强. 双波长法测定人参中淀粉含量. 中国现代中药. 2024(07): 1150-1156 .
![]() | |
8. |
冉腾飞,夏茹,李永鹏,高娅,杨才,黄安柱,田山君. 蔓薯并长期遮荫对商薯19淀粉加工品质及营养品质的影响. 山东农业科学. 2024(11): 44-51 .
![]() | |
9. |
胡方洋,邓健,张得祥,刘彩华,麦馨允,朱正杰. 凯特芒果淀粉的提取及其性质研究. 食品与生物技术学报. 2024(10): 163-172 .
![]() | |
10. |
赵灿,陶星宇,汤尚文,刘传菊,豁银强,张倩. 甘薯淀粉对山药凝胶肠理化特性的影响. 中国粮油学报. 2023(02): 58-65 .
![]() | |
11. |
陈炜璇,庄婉娴,吴迁迁,何恒涛,胡海茵,孙若欣,宋贤良. 紫米粉圆感官评价及质构特性的相关性分析. 食品与机械. 2023(03): 11-16+22 .
![]() | |
12. |
唐云,闫海彦,赵亚雄,郇丹,宗文文,宋菲红. 碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨. 食品工业科技. 2023(13): 272-280 .
![]() | |
13. |
卜庆状,邹雪梅,郝晓莉,詹德江. 4种消除高粱直链淀粉测定中支链淀粉干扰的方法比较. 食品工业. 2023(06): 295-298 .
![]() | |
14. |
刘建垒,商博,邢晓婷,张东,常柳,孙辉,段晓亮. 4种方法测定小米直链淀粉含量的比较. 食品科学. 2023(12): 217-224 .
![]() | |
15. |
许鑫,王斌,崔波. 可生物降解改性淀粉基薄膜的特性及应用研究进展. 食品工业科技. 2023(15): 474-481 .
![]() | |
16. |
王庆宇,周平,王贵军,倪靖岳,李徐森,钟帅,李威,罗明宇. 不同品种糯高粱酿造酱香型白酒对比研究. 中国酿造. 2023(08): 65-70 .
![]() | |
17. |
王立,殷剑美,韩晓勇,蒋璐,郭文琦,金林,张培通. 芋可溶性淀粉合成酶CeSS基因家族的克隆和表达分析. 江苏农业学报. 2023(04): 939-946 .
![]() | |
18. |
邹浩峰,廖雨华,黄师荣,隋勇,熊添,施建斌,蔡沙,蔡芳,梅新. 不同生物酶协同植物乳杆菌发酵对紫甘薯生全粉理化特性的影响. 中国粮油学报. 2023(08): 213-220 .
![]() | |
19. |
许丽蓉,李闯,刘洋,黄璇,张旭,邓萍,戴求仲,夏敏,蒋桂韬,范志勇. 稻谷对鹅的营养价值评定及代谢能预测. 动物营养学报. 2023(11): 7192-7200 .
![]() | |
20. |
赵令敏,张艳芳,邢丽南,葛明然,刘小燕,霍秀文. 山药异淀粉酶基因克隆及其在淀粉代谢中的作用. 西北植物学报. 2022(11): 1827-1834 .
![]() |