XU Qinqian, ZHU Guowei, ZHAO Ziling, et al. Separation, Purification and Characterization of Chitinase of the Endophytic Bacterium Bacillus thuringiensis Bt028 Isolated from Sour Orange[J]. Science and Technology of Food Industry, 2022, 43(11): 159−166. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100184.
Citation: XU Qinqian, ZHU Guowei, ZHAO Ziling, et al. Separation, Purification and Characterization of Chitinase of the Endophytic Bacterium Bacillus thuringiensis Bt028 Isolated from Sour Orange[J]. Science and Technology of Food Industry, 2022, 43(11): 159−166. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100184.

Separation, Purification and Characterization of Chitinase of the Endophytic Bacterium Bacillus thuringiensis Bt028 Isolated from Sour Orange

More Information
  • Received Date: October 18, 2021
  • Available Online: April 16, 2022
  • In order to reveal the basic enzymatic properties of the chitinase produced by an endophytic bacterium Bacillus thuringiensis Bt028 isolated from sour orange fruit, the chitinase in the strain fermentation broth were purified by centrifugation, ammonium sulfate precipitation, dextran gel G-100 chromatography and SDS-polyacrylamide gel electrophoresis and the optimum temperature, optimum pH and catalytic kinetic parameters of the chitinase were also investigated. The results showed that electrophoretic pure chitinase was obtained by centrifugation, ammonium sulfate precipitation and dextran G-100 gel chromatography from fermentation broth of the strain Bt028, with the specific activity of 681.78 U/mg, the purification factor of 3.21 and enzymatic activity recovery of 15.52%, and the molecular mass of the chitinase was determined to be 65 kDa by SDS-polyacrylamide gel electrophoresis. The enzymatic characteristics study results showed that the optimum reaction temperature of the chitinase was 60 ℃ with good stability when temperature lower than 60 ℃; and the optimum reaction pH was 6.5 with good stability at pH5.5~7.5. Mg2+, Ca2+, Hg2+ and Co2+ had inhibitory effect on the enzyme activity, while Cu2+ and Fe3+ had a certain promotion effect. Low concentrations of methanol, ethanol, n-propanol and dimethyl sulfoxide increased the enzymatic activity, however, the chitinase would be inhibited when the concentration of these organic solvents were increased to a certain level. The chitinase could be activated by acetone but inhibited by formaldehyde. Under the optimal catalytic conditions, the value of Km, Vmax and Kcat of the chitinase-catalyzed reaction were 29.533 mg/mL, 108.696 μmoL/(L·min) and 0.527/min, respectively. Research results provide technical parameters for the practical application of the chitinase.
  • [1]
    MOUSSIAN B. Chitin: Structure, chemistry and biology[J]. Advances in Experimental Medicine and Biology,2019,1142:5−18.
    [2]
    SHAHBAZ U. Chitin, characteristic, sources, and biomedical application[J]. Current Pharmaceutical Biotechnology,2020,21(14):1433−1443. doi: 10.2174/1389201021666200605104939
    [3]
    TSURKAN M V, ALONA V, KHRUNYK Y, et al. Progress in chitin analytics[J]. Carbohydrate Polymers,2021,252:117−204.
    [4]
    施腾鑫, 黄秀菁, 刘嘉, 等. 黏质沙雷氏菌胞外几丁质酶的纯化及特性[J]. 食品与发酵工业,2012,38(7):114−119. [SHI Tengxin, HUANG Xiujing, LIU Jia, et al. Purification and characterization of extracellular chitinase from Serratia marcescens[J]. Food and Fermentation Industries,2012,38(7):114−119.
    [5]
    ZHOU D, SHEN D S, LU W J, et al. Production of 5-hydroxymethylfurfural from chitin biomass: A review.[J]. Molecules,2020,25(3):541. doi: 10.3390/molecules25030541
    [6]
    RABINARAYAN P. Drug delivery applications of chitin and chitosan: A review[J]. Environmental Chemistry Letters,2020,18:577−594. doi: 10.1007/s10311-020-00963-5
    [7]
    DAI J H, LI F K, FU X. Towards shell biorefinery: Advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals[J]. Chem Sus Chem,2020,13(24):6498−6508. doi: 10.1002/cssc.202001955
    [8]
    袁媛, 荣雅利, 杨丰, 等. 甲壳素/壳聚糖的分离提取方法及在食品工业中的应用研究现状[J]. 食品与发酵工业,2020,46(18):252−258. [YUAN Yuan, RONG Yali, YANG Feng, et al. The separation and extraction methods of chitin/chitosan and its application in food industry[J]. Food and Fermentation Industries,2020,46(18):252−258.
    [9]
    HOSSIN M A, AL S N, AL T S, et al. A review of polymeric chitin extraction, characterization, and applications[J]. Arabian Journal of Geosciences,2021,14(18):1870−1877. doi: 10.1007/s12517-021-08239-0
    [10]
    KAZUO A, SHINSUKE I. Nanofibers based on chitin: A new functional food[J]. Pure and Applied Chemistry,2016,88(6):605−619. doi: 10.1515/pac-2016-0504
    [11]
    陈茜文, 王佳丽, 许春雨. 克氏原螯虾壳膜几丁质酶的分离纯化[J]. 食品工业科技,2018,39(23):159−163. [CHEN Qianwen, WANG Jiali, XU Chunyu. Isolation and purification of chitinase from shellfish of Procambarus clarkii[J]. Science and Technology of Food Industry,2018,39(23):159−163.
    [12]
    徐田甜, 侯是媛, 齐斌, 等. 甲壳素酶的研究进展[J]. 食品与发酵工业,2018,44(10):248−252. [XU Tiantian, HOU Shiyuan, QI Bin, et al. Research progress of chitinase[J]. Food and Fermentation Industries,2018,44(10):248−252.
    [13]
    MANISH K, AMANDEEP B, VIVEKANAND V, et al. Bioconversion of chitin to bioactive chitooligosaccharides: Amelioration and coastal pollution reduction by microbial resources[J]. Marine Biotechnology,2018,20(3):269−281. doi: 10.1007/s10126-018-9812-x
    [14]
    王敏, 辛二娜, 王瑶, 等. 几丁质降解菌的分离鉴定与产酶条件探究[J]. 山西农业科学,2021,49(4):420−424. [WANG Min, XIN Erna, WANG Yao, et al. Isolation and identification of chitin-degrading bacterium and exploration of the optimal culture conditions for enzyme production[J]. Journal of Shanxi Agricultural Sciences,2021,49(4):420−424. doi: 10.3969/j.issn.1002-2481.2021.04.05
    [15]
    顾张慧, 刘姝, 胡晟源, 等. 一株产几丁质脱乙酰酶海洋细菌的筛选、鉴定及发酵优化[J]. 食品工业科技,2017,38(18):129−134. [GU Zhanghui, LIU Shu, HU Shengyuan, et al. Screening and identification of a marine bacteria producing chitin deacetylase and optimization of its fermentation conditions[J]. Science and Technology of Food Industry,2017,38(18):129−134.
    [16]
    杨绍青, 刘学强, 刘瑜, 等. 酶法制备几种功能性低聚糖的研究进展[J]. 生物产业技术,2019,7(4):16−25. [YANG Shaoqin, LIU Xueqiang, LIU Yu, et al. Research progress on preparation of functional oligosaccharides by enzymatic method[J]. Biotechnology and Business,2019,7(4):16−25.
    [17]
    陈立功, 吴家葳, 张冉, 等. 发光杆菌产几丁质酶的工艺优化[J]. 食品工业科技,2021,42(1):110−114. [CHEN Ligong, WU Jiawei, ZHANG Ran, et al. Optimization of chitinase production by the Photobacterium sp. LG-1[J]. Science and Technology of Food Industry,2021,42(1):110−114.
    [18]
    ZHOU J, CHEN J H, XU N, et al. The broad-specificity chitinases: Their origin, characterization, and potential application[J]. Applied Microbiology and Biotechnology,2019,103(8):3289−3295.
    [19]
    姜竹峪, 陈羽, 魏锦兴, 等. 几丁质酶的研究进展[J]. 沈阳药科大学学报,2016,33(5):414−418. [JIANG Zuyu, CHEN Yi, WEI Jinxing, et al. Recent advances in research on chitinase[J]. Journal of Shenyang Pharmaceutical University,2016,33(5):414−418.
    [20]
    胡荣康, 肖正, 林满红, 等. 微生物热稳定几丁质酶的研究进展[J]. 食品工业科技,2016,37(22):359−364. [HU Rongkang, XIAO Zheng, LIN Manhong, et al. Research progress on thermophilic microorganism chitinase[J]. Science and Technology of Food Industry,2016,37(22):359−364.
    [21]
    程笑笑, 冯自力, 冯鸿杰, 等. 真菌源几丁质酶在植物抗真菌病害中的应用[J]. 植物保护,2017,43(3):29−35. [CHENG Xiaoxiao, FENG Zili, FENG Hongjie, et al. Applications of fungal chitinase in the fungal disease-resistant plants[J]. Plant Protection,2017,43(3):29−35. doi: 10.3969/j.issn.0529-1542.2017.03.005
    [22]
    DU J H, DUAN S, MIAO J Y, et al. Purification and characterization of chitinase from Paenibacillus sp.[J]. Biotechnology and Applied Biochemistry,2021,68(1):30−40. doi: 10.1002/bab.1889
    [23]
    GUO X X, XU P, ZONG M H, et al. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611[J]. Chinese Journal of Catalysis,2017,38(4):665−672. doi: 10.1016/S1872-2067(17)62787-6
    [24]
    苏明慧, 胡雪芹, 顾东华, 等. 短短芽孢杆菌几丁质酶的分离纯化及酶学性质[J]. 食品科学,2015,36(19):176−179. [SU Minhui, HU Xueqin, GU Donghua, et al. Purification and characterization of chitinase from the fermentation broth of Brevibacillus brevis FM4B[J]. Food Science,2015,36(19):176−179. doi: 10.7506/spkx1002-6630-201519031
    [25]
    刘蒲临, 程德勇, 缪礼鸿. 产几丁质酶侧孢短芽孢杆菌的筛选及其酶学性质研究[J]. 生物技术通报,2016,32(6):174−180. [LIU Pulin, CHENG Deyong, MIAO Lihong. Isolation of a chitinase-producing strain Brevibacillus laterosporus and its enzymatic properties[J]. Biotechnology Bulletin,2016,32(6):174−180.
    [26]
    刘美艳, 王景景, 谢逸萍, 等. 甘薯几丁质酶的分离与纯化[J]. 江苏农业科学,2017,45(18):186−188. [LIU Meiyan, WANG Jingjing, XIE Yiping, et al. Isolation and purification of chitinase from sweet potato[J]. Jiangsu Agricultural Sciences,2017,45(18):186−188.
    [27]
    袁淑博, 陈晓通, 佘梦林, 等. MEW06产几丁质酶响应面发酵条件优化研究[J]. 绿色科技,2018(12):156−160. [YUAN Shubo, CHEN Xiaotong, SHE Menglin, et al. Optimization of response surface fermentation conditions for MEW06 production of chitinase[J]. Green Science and Technology,2018(12):156−160.
    [28]
    聂昌宏, 郑欣, 阿依居来克·卡得尔, 等. 考马斯亮蓝法检测不同乳中乳清蛋白含量[J]. 食品安全质量检测学报,2019,10(5):1138−1142. [NIE Changhong, ZHENG Xin, AYIGUKAIKE Kadeer, et al. Determination of whey protein content in different kinds of milk by coomassie brilliant blue method[J]. Journal of Food Safety and Quality,2019,10(5):1138−1142.
    [29]
    吴春, 孙宁, 刘宁, 等. 响应面优化盐析法姬松茸多糖脱蛋白研究[J]. 食品工业科技,2017,38(13):191−196, 201. [WU Chun, SUN Ning, LIU Ning, et al. Optimization of deproteinization process from Agaricus blazei Murill polysaccharides by salting-out method[J]. Science and Technology of Food Industry,2017,38(13):191−196, 201.
    [30]
    郭金玲, 陈程鹏, 周一郎, 等. 黑曲霉β-葡萄糖苷酶的分离纯化及酶学性质研究[J]. 中国酿造,2021,40(2):83−87. [GUO Jinling, CHEN Chengpeng, ZHOU Yilang, et al. Purification and characterization of β-glucosidase from Aspergillus niger[J]. China Brewing,2021,40(2):83−87. doi: 10.11882/j.issn.0254-5071.2021.02.016
    [31]
    高兆建, 丁飞鸿, 陈欢, 等. 产黄青霉抗真菌几丁质酶的纯化及特性分析[J]. 食品科学,2021,42(14):129−136. [GAO Zhaojian, DING Feihong, CHEN Huan, et al. Purification and characterization of antifungal chitinase from Penicillium chrysogenum[J]. Food Science,2021,42(14):129−136. doi: 10.7506/spkx1002-6630-20200229-329
    [32]
    FARAG A M. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus[J]. The Egyptian Journal of Aquatic Research,2016,42(2):185−192. doi: 10.1016/j.ejar.2016.04.004
    [33]
    罗玉彬. 高产几丁质酶菌株的筛选与CK_1-3菌株几丁质酶的纯化与鉴定[D]. 南昌: 江西师范大学, 2011

    LUO Yubing. Screening of chitinase producing strains and purification and identification of chitinase from CK_1-3 strain [D]. Nanchang: Jiangxi Normal University, 2011.
    [34]
    刘佳, 宋萍, 张杰, 等. 苏云金芽孢杆菌几丁质酶Chi73的特性及生物活性研究[J]. 河北农业大学学报,2019,42(4):74−81. [LIU Jia, SONG Ping, ZHANG Jie, et al. Characteristics and biological activity of the chitinase Chi73 from Bacillus thuringiensis[J]. Journal of Agricultural University of Hebei,2019,42(4):74−81.
    [35]
    丁志雯, 刘耀东, 黄志发, 等. 产几丁质酶海洋细菌Dyadobacter sp. CZW019的筛选、鉴定及酶学性质研究[J]. 江苏海洋大学学报(自然科学版),2021,30(2):22−29. [DING Zhiwen, LIU Yaodong, HUANG Zhifa, et al. Screening, identification and characterization of chitinase-producing marine bacteria Dyadobacter sp. CZW019[J]. Journal of Jiangsu Ocean University (Natural Science Edition),2021,30(2):22−29.
    [36]
    张瑶心, 王亮节, 郑文, 等. 产几丁质酶的无色杆菌ZWW8的发酵产酶及酶学性质研究[J]. 生物技术通报,2021,37(4):96−106. [ZHANG Yaoxin, WANG Liangjie, ZHENG Wen, et al. Study on enzyme production of a chitinase producing strain Achromobacter sp. ZWW8 by fermentation and its enzymatic characterization[J]. Biotechnology Bulletin,2021,37(4):96−106.
    [37]
    AZIZOGLU Z B, YILMAZ S, AZIZOGLU U, et al. Molecular characterization of the chitinase genes of native Bacillus thuringiensis isolates and their antagonistic activity against three important phytopathogenic fungi[J]. Biologia,2021,9(76):2745−2755.
    [38]
    邱君志, 邱振兴, 关雄. 有机溶剂对蜡蚧菌几丁质酶的影响[J]. 激光生物学报,2009,18(2):206−209. [QIU Junzhi, QIU Zhenxing, GUAN Xiong. Effects of different organic solvents on the chitinase from Lecanicillium lecani[J]. Acta Laser Biology Sinica,2009,18(2):206−209. doi: 10.3969/j.issn.1007-7146.2009.02.012
  • Cited by

    Periodical cited type(12)

    1. 赵星,张嘉楠,张一鸣,金欣欣,苏俏,宋亚辉,李玉荣,王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报. 2025(01): 226-233 .
    2. 魏松丽,张丽霞,孙强,芦鑫,靳淑秀,孙晓静,金璐,游静,黄纪念. 真空干燥花生油体的条件优化及性质表征. 河南工业大学学报(自然科学版). 2024(01): 8-16 .
    3. 张亚靖,陈复生,王颖颖,刘晨,郑乾坤,殷丽君. 油脂体的提取方法及其在食品中应用的研究进展. 中国油脂. 2024(08): 131-136 .
    4. 单子明,彭郁,秦琛强,傅娆,李茉,倪元颖,温馨. 植物油脂体提取及稳定性评价研究进展. 食品科学. 2024(19): 19251-19262 .
    5. 忠梦,刘白宁,华威,王锋,荣瑞芬,段玉权. 不同包装核桃仁氧化机制分析. 食品科学. 2024(20): 65-73 .
    6. 尹国友,杨卓凡,曾姣,张莹莹,孙婕,王召. 大豆油体包埋韭菜籽油微胶囊工艺优化及其稳定性评价. 食品科技. 2024(11): 267-275 .
    7. 李天赐,陈毅保,刘昆仑,陈复生,杨趁仙,段晓杰,朱婷伟. 界面蛋白对水酶法提取植物油脂过程中乳状液稳定性影响的研究进展. 食品科学. 2023(17): 188-195 .
    8. 王广婕,赵焕宇,苏成成,韦旋,吴梦果,单迪,黄萍,马佳歌,侯俊财,姜瞻梅. 油脂体的组成、结构及氧化稳定性研究进展. 食品科学. 2023(21): 293-302 .
    9. 官梦姝,冯雪,刘月,朱秀清,姜瞻梅,江连洲,侯俊财. 3种天然酚类物质对大豆油脂体稳定性及体外消化性的影响. 食品科学. 2022(03): 10-18 .
    10. 秦晓鹏,黄沙沙,聂成镇,禹晓,邓乾春,相启森,朱莹莹. 微波处理对萌动亚麻籽酚类化合物油相迁移的影响. 食品科学技术学报. 2022(03): 124-136 .
    11. 汪锦,应瑞峰,王耀松,黄梅桂. 超声-水酶法对高品质薄壳山核桃油释放的影响. 食品与发酵工业. 2022(18): 177-182 .
    12. 刘子豪,梅雅欣,彭郁,傅娆,秦琛强,倪元颖,温馨. 外源蛋白对大豆油脂体稳定性的影响. 食品科学. 2022(22): 1-9 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (198) PDF downloads (21) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return