ZHONG Hangyu, WANG Mansheng, ZHENG Jianxin, et al. Reduction of Allergenicity of Aquatic Products by Non-Thermal Processing and the Evaluation Methods of Allergenicity of Aquatic Products: A Review[J]. Science and Technology of Food Industry, 2022, 43(20): 471−480. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100142.
Citation: ZHONG Hangyu, WANG Mansheng, ZHENG Jianxin, et al. Reduction of Allergenicity of Aquatic Products by Non-Thermal Processing and the Evaluation Methods of Allergenicity of Aquatic Products: A Review[J]. Science and Technology of Food Industry, 2022, 43(20): 471−480. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100142.

Reduction of Allergenicity of Aquatic Products by Non-Thermal Processing and the Evaluation Methods of Allergenicity of Aquatic Products: A Review

More Information
  • Received Date: October 17, 2021
  • Available Online: August 10, 2022
  • Aquatic product allergy is an important food safety problem. As a new green food processing method, non-thermal processing technology is gradually applied to the research field of reducing the allergenicity of aquatic products. Therefore, this paper briefly introduces food allergy, and summarizes the non-thermal processing technologies such as irradiation, ultrasound, ultra-high pressure, low-temperature plasma, glycosylation treatment and enzymatic hydrolysis to reduce the allergenicity of aquatic products and the allergenicity evaluation methods of aquatic products such as serology, simulated digestion, cell experiment and animal experiment, so as to provide reference and guidance for the development of aquatic products with low allergenicity.
  • [1]
    李晓晨, 卢瑛, 李晓晖. 动物性水产品过敏原及其消减技术研究进展[J]. 中国食品学报, 2021, 21(10): 325−333

    LI Xiaochen, LU Ying, LI Xiaohui. Research progress on allergens and their reduction techniques in animal aquatic products[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10): 325−333
    [2]
    刘萌. 热加工影响拟穴青蟹肌肉过敏原致敏性及其分子机理研究[D]. 厦门: 集美大学, 2020.

    LIU Meng. Study on the effect of thermal processing on the allergenicity of muscle allergens of Cynomolgus pseudoacutus[D]. Xiamen: Jimei University, 2020.
    [3]
    郭颖希, 王满生, 成军虎, 等. 非热加工技术消减食物过敏原研究进展[J]. 食品与机械,2019,35(5):219−223, 230. [GUO Yingxi, WANG Mansheng, CHENG Junhu, et al. A review on elimination of food allergens by non-thermal processing technologies[J]. Food & Machinery,2019,35(5):219−223, 230.
    [4]
    EKEZIE F-G C, CHENG J-H, SUN D-W. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances[J]. Trends in Food Science & Technology,2018,74:12−25.
    [5]
    饶欢, 田阳, 陶莎, 等. 加工方式对花生致敏性的影响及其致敏性评价研究进展[J]. 食品科学,2015,36(23):283−287. [RAO Huan, TIAN Yang, TAO Sha, et al. Effects of processing methods on peanut allergenicity and evaluation methods for peanut allergenicity: A review[J]. Food Science,2015,36(23):283−287. doi: 10.7506/spkx1002-6630-201523052
    [6]
    蔡鑫, 邓灯, 王颖, 等. 三疣梭子蟹多克隆抗体与4种经济蟹类血细胞交叉反应的研究[J]. 水产科学,2017,36(3):303−310. [CAI Xin, DENG Deng, WANG ying, et al. Antigenic cross-reactivity of crustacean hemocytes using polyclonal antibodies of swimming crab Portunus trituberculatus[J]. Fisheries Science,2017,36(3):303−310.
    [7]
    桓霏, 云肖, 李梦思, 等. 贝类致敏原抗原表位及交叉反应的研究进展[J]. 食品工业科技,2021,42(14):420−428. [HUAN Fei, YUN Xiao, LI Mengsi, et al. Research progress on epitopes and cross-reactivity of shellfish allergens[J]. Science and Technology of Food Industry,2021,42(14):420−428.
    [8]
    邵虎明, 肖有明, 谢彦海, 等. 鲤鱼小清蛋白多克隆抗体的制备及免疫交叉反应的研究[J]. 食品科技,2019,44(7):50−55. [SHAO Huming, XIAO Youming, XIE Yanhai, et al. Polyclonal antibody preparation and immunological cross-reactivity of carp parvalbumin[J]. Food Science and Technology,2019,44(7):50−55.
    [9]
    ZHANG Z, LI X M, LI Z, et al. Investigation of glycated shrimp tropomyosin as a hypoallergen for potential immunotherapy[J]. Food & Function,2021,12(6):2750−2759.
    [10]
    WU Z, LIU Y, ZHENG J, et al. Genomic structure, expression and functional characterization of arginine kinase (EcAK) from Exopalaemon carinicauda[J]. Fish & Shellfish Immunology,2021,109:82−86.
    [11]
    RUETHERS T, TAKI A C, JOHNSTON E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology,2018,100:28−57. doi: 10.1016/j.molimm.2018.04.008
    [12]
    UENO R, TAKAOKA Y, SHIMOJO N, et al. A case of pediatric anaphylaxis caused by gummy tablets containing fish collagen[J]. Asia Pacific Allergy,2020,10(4):e35−e41. doi: 10.5415/apallergy.2020.10.e35
    [13]
    ZHANG Z, LI R, AWEYA J J, et al. Identification and characterization of glycosylation sites on Litopenaeus vannamei hemocyanin[J]. Febs Letters,2019,593(8):820−830. doi: 10.1002/1873-3468.13367
    [14]
    赵晓涵, 刘文颖, 程青丽, 等. 太平洋牡蛎过敏原精氨酸激酶的分子克隆、表达纯化和免疫原性鉴定[J]. 中国食品添加剂,2021,32(2):100−106. [ZHAO Xiaohan, LIU Wenying, CHENG Qingli, et al. Cloning, expression, purification and immunogenicity identification of arginine kinase, the allergen from Crassostrea gigas[J]. China Food Additives,2021,32(2):100−106.
    [15]
    RUETHERS T, TAKI A C, KARNANEEDI S, et al. Expanding the allergen repertoire of salmon and catfish[J]. Allergy,2021,76(5):1443−1453. doi: 10.1111/all.14574
    [16]
    陈一瑜. 定点突变对拟穴青蟹肌质钙结合蛋白结构及致敏性的影响[D]. 厦门: 集美大学, 2021.

    CHEN Yiyu. Effect of site directed mutation on the structure and sensitization of sarcoplasmic calcium binding protein of Cynomolgus pseudoacutus[D]. Xiamen: Jimei University, 2021.
    [17]
    KUEHN A, HILGER C, LEHNERS-WEBER C, et al. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: Component resolved diagnosis using parvalbumin and the new allergens[J]. Clinical and Experimental Allergy,2013,43(7):811−822. doi: 10.1111/cea.12117
    [18]
    牟慧. 虾过敏原表位在辐照与热处理中免疫原性的变化及表位氨基酸分析[D]. 北京: 中国农业科学院, 2014.

    MOU Hui. Changes of immunogenicity of shrimp allergen epitopes during irradiation and heat treatment and analysis of epitope amino acids[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
    [19]
    AHMED I, LV L, LIN H, et al. Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp (Metapenaeus ensis) tropomyosin[J]. Food Chemistry,2018,248:287−295. doi: 10.1016/j.foodchem.2017.12.071
    [20]
    张敏. 基于糖基化反应的低致敏鳕鱼小清蛋白制备及其结构研究[D]. 南昌: 南昌大学, 2020.

    ZHANG Min. Preparation and structure study of low sensitized cod albumin based on glycosylation reaction[D]. Nanchang: Nanchang University, 2020.
    [21]
    ZHANG Z, XIAO H, ZHOU P. Glycation by saccharides of different molecular sizes affected the allergenicity of shrimp tropomyosin via epitope loss and the generation of advanced glycation end products[J]. Food & Function,2019,10(11):7042−7051.
    [22]
    李立, 孙智慧, 苗卿华, 等. 超高压加工技术在食品工业中应用的研究进展[J]. 食品工业科技,2021,42(6):337−342. [LI Li, SUN Zhihui, MIAO Qinghua, et al. New research progress of high pressure processing technology in food industry[J]. Science and Technology of Food Industry,2021,42(6):337−342.
    [23]
    LI Z, LIU H, MA R, et al. Changes to the tropomyosin structure alter the angiotensin-converting enzyme inhibitory activity and texture profiles of eel balls under high hydrostatic pressure[J]. Food & Function,2018,9(12):6536−6544.
    [24]
    YANG X, SUN J, TAO J, et al. The allergenic potential of walnuts treated with high pressure and heat in a mouse model of allergy[J]. Innovative Food Science & Emerging Technologies,2017,39:165−170.
    [25]
    罗春萍, 冯娟, 项缨, 等. 辐照技术消减食物过敏原致敏性研究进展[J]. 核农学报,2020,34(6):1272−1280. [LUO Chunping, FENG Juan, XIANG Ying, et al. Advances in food irradiation reducing the allergenicity of food allergens[J]. Journal of Nuclear Agricultural Sciences,2020,34(6):1272−1280. doi: 10.11869/j.issn.100-8551.2020.06.1272
    [26]
    PAN M, YANG J, LIU K, et al. Irradiation technology: An effective and promising strategy for eliminating food allergens[J]. Food Research International,2021,148(12):110578.
    [27]
    LI Z, LU Z, KHAN M N, et al. Protein carbonylation during electron beam irradiation may be responsible for changes in IgE binding to turbot parvalbumin[J]. Food and Chemical Toxicology,2014,69:32−37. doi: 10.1016/j.fct.2014.03.039
    [28]
    马涛, 王一侠, 刘艳, 等. 超声处理对三文鱼小清蛋白构象及致敏活性的影响[J]. 食品工业,2017,38(3):160−163. [MA Tao, WANG Yixia, LIU Yan, et al. Effect of ultrasonic treatment on the antigenicity and conformation of salmon parvalbumin[J]. The Food Industry,2017,38(3):160−163.
    [29]
    朱士臣, 陈小草, 柯志刚, 等. 低温等离子体技术及其在水产品加工中的应用 [J]. 中国食品学报, 2021, 21(10): 305-314. [ZHU Shichen, CHEN Xiaocao, KE Zhigang, et al. Non-thermal plasma technology and its applications in aquatic products processing[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10): 305-314.
    [30]
    MEJRHIT N, AZDAD O, CHDA A, et al. Evaluation of the sensitivity of moroccans to shrimp tropomyosin and effect of heating and enzymatic treatments[J]. Food and Agricultural Immunology,2017,28(6):969−980. doi: 10.1080/09540105.2017.1323187
    [31]
    MEI K, LI G, ZHANG J, et al. Studying on the IgG binding capacity and conformation of tropomyosin in Ovalipes punctatus meat irradiated with electron beam[J]. Radiation Physics and Chemistry,2020,168:108525. doi: 10.1016/j.radphyschem.2019.108525
    [32]
    官爱艳, 罗华彬, 梅卡琳, 等. 电子束辐照对中华管鞭虾原肌球蛋白免疫原性及其构象的影响[J]. 食品科学,2019,40(3):116−121. [GUAN Aiyan, LUO Huabin, MEI Kalin, et al. Effect of electron beam irradiation on immunogenicity and conformation of tropomyosin from shrimps (Solenocera melantho)[J]. Food Science,2019,40(3):116−121. doi: 10.7506/spkx1002-6630-20180125-345
    [33]
    张立敏. 电子束辐照技术对鱼类过敏原活性及质构的影响[D]. 青岛: 中国海洋大学, 2013.

    ZHANG Limin. Effect of electron beam irradiation on the activity and texture of fish allergens[D]. Qingdao: Ocean University of China, 2013.
    [34]
    ZHANG H, LIAO H, LU Y, et al. Effects of high hydrostatic pressure on the structural characteristics of parvalbumin of cultured large yellow croaker (Larimichthys crocea)[J]. Journal of Food Processing and Preservation,2020,44(12):e14911.
    [35]
    张意锋. 高静压对鱿鱼品质及原肌球蛋白、血蓝蛋白致敏性的影响研究[D]. 上海: 上海交通大学, 2017.

    ZHANG Yifeng. Effects of high static pressure on squid quality and sensitization of tropomyosin and hemocyanin[D]. Shanghai: Shanghai Jiaotong University, 2017.
    [36]
    张意锋, 邓云, 赵艳云. 双循环高静压对鱿鱼原肌球蛋白二、三级结构的影响[J]. 中国食品学报,2018,18(5):45−50. [ZHANG Yifeng, DENG Yun, ZHAO Yanyun. Effect of two-cycle high hydrostatic pressure on the secondary and tertiary structures of squid tropomyosin tod p1[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(5):45−50.
    [37]
    EKEZIE F-G C, SUN D-W, CHENG J-H. Altering the IgE binding capacity of king prawn (Litopenaeus vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet[J]. Food Chemistry,2019,300:125143. doi: 10.1016/j.foodchem.2019.125143
    [38]
    戴泽川, 毛相朝, 郝亚楠, 等. 高强度超声对凡纳滨对虾蛋白结构和功能特性的影响[J]. 食品科学:1−13[2022-09-05]. https: //kns. cnki. net/kcms/detail/11.2206. TS. 20211118.1821. 044. html. [DAI Zechuan, MAO Xiangchao, HAO Yanan, et al. Effects of high intensity ultrasound on protein structural and functional properties of protein of Litopenaeus vannamei[J]. Food Science: 1−13[2022-09-05].https://kns.cnki.net/kcms/detail/11.2206.TS.20211118.1821.044.html.
    [39]
    KHAN M U, AHMED I, LIN H, et al. Potential efficacy of processing technologies for mitigating crustacean allergenicity[J]. Critical Reviews in Food Science and Nutrition,2019,59(17):2807−2830. doi: 10.1080/10408398.2018.1471658
    [40]
    ZHANG Z, LI Z, LIN H. Reducing the allergenicity of shrimp tropomyosin and allergy desensitization based on glycation modification[J]. Journal of Agricultural and Food Chemistry,2021,69(49):14742−14750. doi: 10.1021/acs.jafc.1c03953
    [41]
    SHEN H W, LIU Y Y, CHEN F, et al. Purification, characterization and immunoreactivity of tropomyosin, the allergen in Octopus fangsiao[J]. Process Biochemistry,2014,49(10):1747−1756. doi: 10.1016/j.procbio.2014.07.005
    [42]
    马涛, 张海欣, 马永庆, 等. 三文鱼小清蛋白定向酶解模型及致敏活性分析[J]. 食品工业,2017,38(2):179−183. [MA Tao, ZHANG Haixin, MA Yongqing, et al. Simulation model of directed enzymatic hydrolysis and antigeicity verification of salmon parvalbumin[J]. The Food Industry,2017,38(2):179−183.
    [43]
    李晓辉, 倪赛巧, 王翀, 等. 超高压及酶解对虹鳟鱼I型胶原蛋白抗原性的影响[J]. 食品科学,2018,39(13):87−93. [LI Xiaohui, NI Saiqiao, WANG Chong, et al. Effects of high hydrostatic pressure and enzymatic hydrolysis on the antigenicity of type I collagen from Oncorhynchus mykiss skin[J]. Food Science,2018,39(13):87−93. doi: 10.7506/spkx1002-6630-201813014
    [44]
    程华峰, 王福田, 朱亚军, 等. 不同热加工处理方式对中华绒螯蟹原肌球蛋白的消化稳定性和致敏性的影响[J]. 食品安全质量检测学报,2020,11(22):8303−8311. [CHEN Huafeng, WANG Futian, ZHU Yajun, et al. Effects of different thermal processing methods on digestibility and allergenicity of Chinese mitten crab, Eriocheir sinensis tropomyosin[J]. Journal of Food Safety and Quality,2020,11(22):8303−8311.
    [45]
    ZHANG Y, BI Y, WANG Q, et al. Application of high pressure processing to improve digestibility, reduce allergenicity, and avoid protein oxidation in cod (Gadus morhua)[J]. Food Chemistry,2019,298:125087. doi: 10.1016/j.foodchem.2019.125087
    [46]
    DONG X, WANG J, RAGHAVAN V. Effects of high-intensity ultrasound processing on the physiochemical and allergenic properties of shrimp[J]. Innovative Food Science & Emerging Technologies,2020,65(1):102441.
    [47]
    杨世青, 向莉, 皇惠杰, 等. 荧光酶联免疫法和免疫印迹法检测特异性IgE的阳性检出率比较分析[J]. 国际儿科学杂志,2021,48(3):195−201. [YANG shiqing, XIANG Li, HUANG Huijie, et al. Comparison on the positive detection rate of allergen specific IgE measured with the systems between fluorescence enzyme immunoassay and western blot[J]. International Journal of Pediatrics,2021,48(3):195−201. doi: 10.3760/cma.j.issn.1673-4408.2021.03.012
    [48]
    MOU H, GAO M-X, ZHAO J, et al. Influence of gamma irradiation and heat treatment on the immunogenicity of five epitopes of Pen a1[J]. Food Science and Technology Research,2014,20(5):955−960. doi: 10.3136/fstr.20.955
    [49]
    LIU Y, LI Z, PAVASE T, et al. Evaluation of electron beam irradiation to reduce the IgE binding capacity of frozen shrimp tropomyosin[J]. Food and Agricultural Immunology,2017,28(2):189−201. doi: 10.1080/09540105.2016.1251394
    [50]
    程华峰. 不同加工处理方式对中华绒螯蟹主要过敏原的影响[D]. 合肥: 合肥工业大学, 2020.

    CHENG Huafeng. Effects of different processing methods on main allergens of Eriocheir sinensis[D]. Hefei: Hefei University of Technology, 2020.
    [51]
    周微芳, 范卓妍, 姜松松, 等. 食品致敏性评价的动物和细胞模型研究进展[J]. 食品安全质量检测学报,2017,8(4):1120−1126. [ZHOU Weifang, FAN Zhuoyan, JIANG Songsong, et al. Advances in animal and cell models for the evaluation of food allergy[J]. Journal of Food Safety and Quality,2017,8(4):1120−1126.
    [52]
    陈晨, 卓勤, 李永宁, 等. 食物致敏性评价表达人IgE高亲和力受体αβγ的大鼠嗜碱性白血病粒细胞2H3细胞株的建立及鉴定[J]. 卫生研究,2020,49(1):80−85. [CHEN Chen, ZHUO Qin, LI Yongning, et al. Construction and identification of stable hFcεRIαβγ/RBL-2H3 cells for food allergy assessment[J]. Journal of Hygiene Research,2020,49(1):80−85.
    [53]
    HUANG Y, MIN J, HAN X Y, et al. Reduction of the histamine content and immunoreactivity of parvalbumin in Decapterus maruadsi by a Maillard reaction combined with pressure treatment[J]. Food & Function,2018,9(9):4897−905.
    [54]
    HUANG J, LIU C, WANG Y, et al. Application of in vitro and in vivo models in the study of food allergy[J]. Food Science and Human Wellness,2018,7(4):235−243. doi: 10.1016/j.fshw.2018.10.002
    [55]
    毕源, 周忻, 孙娜, 等. 两种方法评价食品过敏原潜在致敏性的对比分析[J]. 食品科学,2013,34(15):313−317. [BI Yuan, ZHOU Xin, SUN Na, et al. Comparison of two methods for evaluating potential allergenicity of food allergens[J]. Food Science,2013,34(15):313−317. doi: 10.7506/spkx1002-6630-201315065
    [56]
    JIN Y, DENG Y, QIAN B, et al. Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure[J]. Food and Chemical Toxicology,2015,76:86−93. doi: 10.1016/j.fct.2014.12.002
    [57]
    ZHANG Z, ZHANG X, CHEN W, et al. Conformation stability, in vitro digestibility and allergenicity of tropomyosin from shrimp (Exopalaemon modestus) as affected by high intensity ultrasound[J]. Food Chemistry,2018,245:997−1009. doi: 10.1016/j.foodchem.2017.11.072
    [58]
    郭玉蔓, 罗晨, 郅莉莉, 等. 模拟消化方法在食物过敏原潜在致敏性评价中的应用进展[J]. 食品工业科技,2021,42(17):397−404. [GUO Yuman, LUO Chen, ZHI Lili, et al. Application progress of simulated digestion method in potential allergenicity assessment of food allergens[J]. Science and Technology of Food Industry,2021,42(17):397−404.
    [59]
    张江涛, 张瑞雪, 方磊, 等. 牡蛎Cra g 1蛋白大鼠致敏模型的建立与分析[J]. 食品与发酵工业,2019,45(18):73−79,86. [ZHANG Jiangtao, ZHANG Ruixue, FANG Lei, et al. Establishment and analysis of sensitization model of oyster Cra g 1 protein in rats[J]. Food and Fermentation Industries,2019,45(18):73−79,86.
    [60]
    CHEN C, SUN N, LI Y, et al. A BALB/c mouse model for assessing the potential allergenicity of proteins: Comparison of allergen dose, sensitization frequency, timepoint and sex[J]. Food and Chemical Toxicology,2013,62:41−47. doi: 10.1016/j.fct.2013.08.004
    [61]
    ZHANG Z, LI X M, XIAO H, et al. Insight into the allergenicity of shrimp tropomyosin glycated by functional oligosaccharides containing advanced glycation end products[J]. Food Chemistry,2020,302:125348. doi: 10.1016/j.foodchem.2019.125348
    [62]
    ZHANG Z, XIAO H, ZHANG X, et al. Insight into the effects of deglycosylation and glycation of shrimp tropomyosin on in vivo allergenicity and mast cell function[J]. Food & Function,2019,10(7):3934−3941.
    [63]
    孙佳益, 王锡昌, 李振兴, 等. 虾类原肌球蛋白的Balb/c小鼠致敏动物模型构建研究[J]. 免疫学杂志,2013,29(2):161−164. [SUN Jiayi, WANG Xichang, LI Zhenxing, et al. Establishment of a sensitization animal model based on Balb/c mice for shrimp tropomyosin[J]. Immunological Journal,2013,29(2):161−164.
    [64]
    MORAFO V, SRIVASTAVA K, HUANG C K, et al. Genetic susceptibility to food allergy is linked to differential T(H)2-T(H)1 responses in C3H/HeJ and BALB/c mice[J]. Journal of Allergy and Clinical Immunology,2003,111(5):1122−1128. doi: 10.1067/mai.2003.1463
    [65]
    傅玲琳, 谢梦华, 王翀, 等. 对虾原肌球蛋白不同致敏途径对BALB/c小鼠致敏性的影响[J]. 食品科学,2018,39(13):166−175. [FU Linling, XIE Menghua, WANG Chong, et al. Allergenicity of shrimp tropomyosin from different sensitization approaches on BALB/c mice[J]. Food Science,2018,39(13):166−175. doi: 10.7506/spkx1002-6630-201813025
  • Cited by

    Periodical cited type(12)

    1. 李德卿,朱军,邹潇潇,吴晓鹏,申铉日,鲍时翔. 莫氏马尾藻多酚提取工艺优化及其抗氧化活性分析. 粮食与油脂. 2024(04): 80-84 .
    2. 何袅袅,蔡树芸,阎光宇,杨婷,陈伟珠,洪专,张怡,张怡评. 铜藻多酚的提取工艺及其稳定性和抑制酪氨酸酶活性. 食品研究与开发. 2024(09): 104-110 .
    3. 董玉婷,马家乐,郑明静,王永兴,朱艳冰,杨远帆,姜泽东,倪辉,李清彪. 红毛藻膳食纤维制备工艺优化. 食品研究与开发. 2024(15): 107-116 .
    4. 邓莹,刘杰,李海洋,陈莎,刘继雄,李明霞,龙昭军,李小丹. 牛马藤多糖的提取工艺优化及抗氧化活性研究. 广州化工. 2024(11): 28-32 .
    5. 何袅袅,陈雅鑫,蔡树芸,施丽君,陈伟珠,陈晖,洪专,张怡,张怡评. 铜藻多酚的分离纯化及抗氧化活性研究. 食品工业科技. 2023(03): 183-191 . 本站查看
    6. 牛佳雯,雒江菡,张雨欣,李婧,禚昊. 道地药材月见草总多酚的提取工艺研究. 安徽农业科学. 2023(01): 166-168+174 .
    7. 常高萍,林巧燕,张敏,郭佳瑄,李志朋,杜希萍,姜泽东. 红毛藻不同乙醇浓度提取物的生物活性及其成分分析. 化学试剂. 2023(02): 98-105 .
    8. 王纪辉,耿阳阳,刘亚娜,张时馨,胡伯凯,梁美,谭化美,何佳丽. 不同溶剂浸提下核桃果实不同部位多酚物质响应及其组成. 南京师大学报(自然科学版). 2022(03): 35-45 .
    9. 何袅袅,陈雅鑫,蔡树芸,陈伟珠,张怡评,洪专. 海藻多酚提取分离及生物活性研究进展. 食品工业. 2022(10): 190-194 .
    10. 陶凤庭,潘创,戚勃,胡晓,赵永强,杨贤庆,杨莉莉. 坛紫菜分离蛋白的提取与结构解析. 大连海洋大学学报. 2022(05): 850-857 .
    11. 龙晓珊,廖森泰,刘书成,刘凡,黎尔纳,庞道睿,穆利霞,王卫飞,邹宇晓. 肉桂多酚清除自由基及抑制α-葡萄糖苷酶活性的能力. 现代食品科技. 2021(08): 119-126 .
    12. 林宝妹,邱珊莲,吴妙鸿,张帅,李海明,洪佳敏. 嘉宝果果皮多酚提取工艺优化及生物活性测定. 江苏农业科学. 2021(21): 191-196 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (234) PDF downloads (19) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return