MO Yan, YANG Shangwei, ZHAO Can, et al. Effect of Enzymatic Hydrolysis by Pullulanase on the Physicochemical Properties of Kudzu Starch[J]. Science and Technology of Food Industry, 2022, 43(13): 79−85. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100064.
Citation: MO Yan, YANG Shangwei, ZHAO Can, et al. Effect of Enzymatic Hydrolysis by Pullulanase on the Physicochemical Properties of Kudzu Starch[J]. Science and Technology of Food Industry, 2022, 43(13): 79−85. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100064.

Effect of Enzymatic Hydrolysis by Pullulanase on the Physicochemical Properties of Kudzu Starch

More Information
  • Received Date: October 10, 2021
  • Available Online: April 29, 2022
  • The effect of pullulanase enzymatic hydrolysis on the physicochemical properties of granular kudzu starch was studied. The gelatinization property, content of resistant starch, thermal characteristic, morphology, particle size, crystal structure and molecular structure of kudzu starch (KS) and enzymatic hydrolysis kudzu starch (EHKS) were determined by rapid viscosity analyzer (RVA), differential scanning calorimetry (DSC), polarizing microscope, scanning electron microscope (SEM), laser particle sizer, fourier transform infrared spectrometer (FTIR) and X-ray diffraction (XRD), respectively. The results showed that after the enzymatic hydrolysis of KS, its peak viscosity and breakdown value decreased by 28.33% and 94.69%, respectively, while the trough viscosity, final viscosity and setback value increased by 12.53%, 12.47% and 12.37%, respectively. And the content of resistant starch increased from 1.29% to 4.60%. After the enzymatic hydrolysis of KS, its polarized cross still existed, but the granules expanded and the particles size became large. And the surface layer was peeled off. DSC endothermic peak of modified starch shifts to high temperature region, but its endothermic enthalpy decreased. The enzymatic hydrolysis promoted the formation of short-range ordered structure of starch molecules. After the enzymatic hydrolysis of KS, its relative crystallinity decreased from 37.31% to 29.10%.
  • [1]
    LIANG J, TOMOKO M, TAO X L, et al. Physicochemical properties of Pueraria root starches and their effect on the improvement of buckwheat noodle quality[J]. Cereal Chemistry,2016,94(3):554−559.
    [2]
    吴琼, 刘奕, 吴庆园, 等. 不同干燥方式对葛根全粉抗氧化性能和香气成分的影响[J]. 食品科学,2017,38(6):202−208. [WU Q, LIU Y, WU Q Y, et al. Effect of different drying methods on the antioxidant properties and aromatic composition of whole flour from Pueraria lobata roots[J]. Food Science,2017,38(6):202−208. doi: 10.7506/spkx1002-6630-201706032

    WU Q, LIU Y, WU Q Y, et al. Effect of different drying methods on the antioxidant properties and aromatic composition of whole flour from pueraria lobata roots[J]. Food Science, 2017, 38(6): 202-208. doi: 10.7506/spkx1002-6630-201706032
    [3]
    朱振元, 罗游, 薛婧, 等. 葛根功能饮料的急性毒性及解酒护肝功效评价[J]. 食品研究与开发,2016,37(21):160−163. [ZHU Z Y, LUO Y, XUE J, et al. Acute toxicity test and sober and hepatoproctive efficacy evaluation of Radix Puerariae functional beverage[J]. Food Research and Development,2016,37(21):160−163. doi: 10.3969/j.issn.1005-6521.2016.21.037

    ZHU Z Y, LUO Y, XUE J, et al. Acute toxicity test and sober and hepatoproctive efficacy evaluation of radix puerariae functional beverage[J]. Food Research and Development, 2016, 37(21): 160-163. doi: 10.3969/j.issn.1005-6521.2016.21.037
    [4]
    胥彦琪, 徐子金, 肖小年. 葛枳黄酮固体饮料的配方优化[J]. 现代食品科技,2020,36(10):253−259. [XU Y Q, XU Z J, XIAO X N. Formula optimization of solid drink products rich in Puerariae and Hovenia dulcis thunb flavones[J]. Modern Food Science and Technology,2020,36(10):253−259.

    XU Y Q, XU Z J, XIAO X N. Formula optimization of solid drink products rich in puerariae and hovenia dulcis thunb flavones[J]. Modern Food Science and Technology, 2020, 36(10): 253-259.
    [5]
    张丽娟, 李燕, 周剑丽, 等. 一种降糖代餐粉的配方研究及质量评价[J]. 食品研究与开发,2019,40(9):95−100. [ZHANG L J, LI Y, ZHOU J L, et al. Formulation of a kind of hypoglycemic meal-replacement powder and quality evaluation[J]. Food Research and Development,2019,40(9):95−100. doi: 10.3969/j.issn.1005-6521.2019.09.016

    ZHANG L J, LI Y, ZHOU J L, et al. Formulation of a kind of hypoglycemic meal-replacement powder and quality evaluation[J]. Food Research and Development, 2019, 40(9): 95-100. doi: 10.3969/j.issn.1005-6521.2019.09.016
    [6]
    苏光林, 何冬雪, 谢文佩. 响应面优化葛根山药挂面制作工艺[J]. 食品工业,2020,41(5):117−121. [SU G L, HE D X, XIE W P. Response surface optimization of Radix Pueraria and yam noodle production process[J]. The Food Industry,2020,41(5):117−121.

    SU G L, HE D X, XIE W P. Response surface optimization of radix pueraria and yam noodle production process[J]. The Food Industry, 2020, 41(5): 117-121.
    [7]
    GUO L, LI J H, YUAN Y H, et al. Structural and functional modification of kudzu starch using α-amylase and transglucosidase[J]. International Journal of Biological Macromolecules,2021,169:67−74. doi: 10.1016/j.ijbiomac.2020.12.099
    [8]
    LI H, CUI B, JANASWAMY S, et al. Structural and functional modifications of kudzu starch modified by branching enzyme[J]. International Journal of Food Properties,2019,22(1):952−966. doi: 10.1080/10942912.2019.1619576
    [9]
    赵红岩, 王娜. 应用α-淀粉酶和糖化酶的协同作用提高葛根饮料稳定性和口感[J]. 食品与发酵工业,2013,39(9):125−128. [ZHAO H Y, WANG N. Enhance the stability and sensory quality of Pueraria lobata beverage by synergistic hydrolysis efficiency[J]. Food and Fermentation Industries,2013,39(9):125−128.

    ZHAO H Y, WANG N. Enhance the stability and sensory quality of pueraria lobata beverage by synergistic hydrolysis efficiency[J]. Food and Fermentation Industries, 2013, 39(9): 125-128.
    [10]
    赵世光. 葛根淀粉的酶法改性及化学改性-速溶即食葛粉的研制[D]. 合肥: 安徽农业大学, 2003

    ZHAO S G. Enzymatic modification and chemical modification of Pueraria starch: Preparation of instant instant Pueraria powder[D]. Hefei: Anhui Agricultural University, 2003.
    [11]
    韦柳燕. 葛根粉及饮料加工关键技术研究与功能评价[D]. 贵州: 贵州大学, 2016

    WEI L Y. Study on the key processing techniques of puerariae powder and the compound beverage and its functional evaluation[D]. Guizhou: Guizhou University, 2016.
    [12]
    卢成特, 苏小军, 李清明, 等. 淀粉类速溶即食粉的研究进展[J]. 食品工业,2019,40(3):258−262. [LU C T, SU X J, LI Q M, et al. Research progress of instant powder of starch[J]. The Food Industry,2019,40(3):258−262.

    LU C T, SU X J, LI Q M, et al. Research progress of instant powder of starch[J]. The Food Industry, 2019, 40(3): 258-262.
    [13]
    赵凯, 陈威, 宫玉晶, 等. 酶脱支处理对颗粒态缓慢消化淀粉形成的影响[J]. 食品科学技术学报,2019,37(2):42−47. [ZHAO K, CHEN W, GONG Y J, et al. Effect of enzyme debranching treatment on formation of granular slowly digestible starch[J]. Journal of Food Science and Technology,2019,37(2):42−47. doi: 10.3969/j.issn.2095-6002.2019.02.007

    ZHAO K, CHEN W, GONG Y J, et al. Effect of enzyme debranching treatment on formation of granular slowly digestible starch[J]. Journal of Food Science and Technology, 2019, 37(2): 42-47. doi: 10.3969/j.issn.2095-6002.2019.02.007
    [14]
    LU Z H, BELANGER N, DONNER E, et al. Debranching of pea starch using pullulanase and ultrasonication synergistically to enhance slowly digestible and resistant starch[J]. Food Chemistry,2018,268:533−541. doi: 10.1016/j.foodchem.2018.06.115
    [15]
    HILAL D B, ZEYNEP T C, DILARA N E. Pullulanase treatments to increase resistant starch content of black chickpea (Cicer arietinum L.) starch and the effects on starch properties[J]. International Journal of Biological Macromolecules,2018,111:505−513. doi: 10.1016/j.ijbiomac.2018.01.026
    [16]
    MA Z, YIN X X, CHANG D N, et al. Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching[J]. International Journal of Biological Macromolecules,2018,120:650−656. doi: 10.1016/j.ijbiomac.2018.08.132
    [17]
    MA Z, MA M X, ZHOU D T, et al. The retrogradation characteristics of pullulanase debranched field pea starch: Effects of storage time and temperature[J]. International Journal of Biological Ma-cromolecules,2019,134:984−992. doi: 10.1016/j.ijbiomac.2019.05.064
    [18]
    张焕新. 抗性淀粉酶法制备及其特性与应用的研究[D]. 无锡: 江南大学, 2012

    ZHANG H X. The preparation and application of resistant starch with a combination of α-amylase and pullulanase[D]. Wuxi: Jiangnan University, 2012.
    [19]
    GE X Z, SHEN H S, SU C Y, et al. Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties[J]. Carbohydrate Polymers,2021,272:118481. doi: 10.1016/j.carbpol.2021.118481
    [20]
    YAN S L, CHEN G Y, HOU Y J, et al. Improved solubility of banana starch by dielectric barrier discharge plasma treatment[J]. International Journal of Food Science & Technology,2020,55(2):641−648.
    [21]
    AI Y F, JANE J L. Gelatinization and rheological properties of starch[J]. Starch,2015,67(3):213−224.
    [22]
    LIU W M, WANG R R, LI J W, et al. Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch[J]. Food Hydrocolloids,2021,120:106925. doi: 10.1016/j.foodhyd.2021.106925
    [23]
    王雨生, 陈海华, 赵阳, 等. 热处理对不同直链淀粉含量的玉米淀粉理化性质的影响[J]. 中国粮油学报,2016,31(9):45−51. [WANG Y S, CHEN H H, ZHAO Y, et al. Effect of ther-mal treatment on physicochemical properties of corn starches with different amylose content[J]. Journal of the Chinese Cereals and Oils Association,2016,31(9):45−51. doi: 10.3969/j.issn.1003-0174.2016.09.008

    WANG Y S, CHEN H H, ZHAO Y, et al. Effect of thermal treatment on physicochemical properties of corn starches with different amylose content[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(9): 45-51. doi: 10.3969/j.issn.1003-0174.2016.09.008
    [24]
    徐兵, 刘洁, 刘亚伟. 普鲁兰酶脱支对淀粉结构及热稳定性的影响[J]. 食品科技,2020,45(7):255−261. [XU B, LIU J, LIU Y W, et al. Effect of debranching by pullulanase on structure and thermal stability of starch[J]. Food Science and Technology,2020,45(7):255−261.

    XU B, LIU J, LIU Y W, et al. Effect of debranching by pullulanase on structure and thermal stability of starch[J]. Food Science and Technology, 2020, 45(7): 255-261.
    [25]
    陈云霞. 葛根抗性淀粉的制备工艺研究[J]. 中国食品添加剂,2009(2):149−152. [CHEN Y X. Study on kudzu resistant starch preparation technology[J]. China Food Additives,2009(2):149−152. doi: 10.3969/j.issn.1006-2513.2009.02.029

    CHEN Y X. Study on kudzu resistant starch preparation technology[J]. China Food Additives, 2009(2): 149-152. doi: 10.3969/j.issn.1006-2513.2009.02.029
    [26]
    MA Z, BOYE J I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review[J]. Critical Reviews in Food Science and Nutrition,2018,58(7):1059−1083. doi: 10.1080/10408398.2016.1230537
    [27]
    LOCKYER S, NUGENT A P. Health effects of resistant starch[J]. Nutrition Bulletin,2017,42(1):10−41. doi: 10.1111/nbu.12244
    [28]
    罗志刚, 高群玉, 涂雅俊, 等. 颗粒态抗性淀粉结晶性质的研究[J]. 中国粮油学报,2008(4):102−106. [LUO Z G, GAO Q Y, TU Y J, et al. Crystalline property of granular resistant starch[J]. Journal of the Chinese Cereals and Oils Association,2008(4):102−106.

    LUO Z G, GAO Q Y, TU Y J, et al. Crystalline property of granular resistant starch[J]. Journal of the Chinese Cereals and Oils Association, 2008(4): 102-106.
    [29]
    SHI J L, SWEEDMAN M C, SHI Y C. Structure, birefringence and digestibility of spherulites produced from debranched waxy maize starch[J]. International Journal of Biological Macromolecules,2021,183:1486−1494. doi: 10.1016/j.ijbiomac.2021.05.127
    [30]
    朱平, 孔祥礼, 包劲松. 抗性淀粉在食品中的应用及功效研究进展[J]. 核农学报,2015,29(2):327−336. [ZHU P, KONG X L, BAO J S. Current progress on the applications and health benefits of resistant starch in foods[J]. Journal of Nuclear Agricultural Sciences,2015,29(2):327−336. doi: 10.11869/j.issn.100-8551.2015.02.0327

    ZHU P, KONG X L, BAO J S. Current progress on the applications and health benefits of resistant starch in foods[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 327-336. doi: 10.11869/j.issn.100-8551.2015.02.0327
    [31]
    ZHANG K Y, ZHAO D, GUO D X, et al. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment[J]. International Journal of Biological Macromolecules,2021,183:481−489. doi: 10.1016/j.ijbiomac.2021.04.180
    [32]
    缪铭. 慢消化淀粉的特性及形成机理研究[D]. 无锡: 江南大学, 2009

    MIAO M. Characteristic and formation mechanism of slowly digestible starch[D]. Wuxi: Jiangnan University, 2009.
    [33]
    杨玥熹, 曹一丹, 俞安珍, 等. RS3型芡实抗性淀粉的制备及纯化工艺研究[J]. 中国粮油学报,2020,35(10):69−76. [YANG Y X, CAO Y D, YU A Z, et al. Preparation and purification of RS3-type resistant starch from Euryale ferox[J]. Journal of the Chinese Cereals and Oils Association,2020,35(10):69−76. doi: 10.3969/j.issn.1003-0174.2020.10.012

    YANG Y X, CAO Y D, YU A Z, et al. Preparation and purification of RS3-Type resistant starch from euryale ferox[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(10): 69-76. doi: 10.3969/j.issn.1003-0174.2020.10.012
    [34]
    张秀. 淀粉DSC热转变过程中分子变化机理[D]. 天津: 天津科技大学, 2017

    ZHANG X. Reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry[D]. Tianjin: Tianjin University of Science and Technology, 2017.
    [35]
    SRICHUWONG S, SUNARTI T C, MISHIMA T, et al. Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility[J]. Carbohydrate Polymers,2005,60(4):529−538. doi: 10.1016/j.carbpol.2005.03.004
    [36]
    牛博文, 徐薇, 张彧. 不同化学方法制备的抗性淀粉理化性质及表征研究[J]. 食品工业科技,2020,41(17):19−23,31. [NIU B W, XU W, ZHANG Y. Physical and chemical properties and characterization of resistant starch prepared by different chemical methods[J]. Science and Technology of Food Industry,2020,41(17):19−23,31.

    NIU B W, XU W, ZHANG Y. Physical and chemical properties and characterization of resistant starch prepared by different chemical methods[J]. Science and Technology of Food Industry, 2020, 41(17): 19-23, 31.
    [37]
    彭晔, 余振宇, 郑志, 等. 芋头淀粉纳米颗粒的制备及其表征[J]. 食品工业科技,2018,39(9):6−10. [PENG Y, YU Z Y, ZHENG Z, et al. Preparation and characterization of taro starch nanoparticles[J]. Science and Technology of Food Industry,2018,39(9):6−10.

    PENG Y, YU Z Y, ZHEN Z, et al. Preparation and characterization of taro starch nanoparticles[J]. Science and Technology of Food Industry, 2018, 39(9): 6-10.
    [38]
    李芮, 李云龙, 侯丽冉, 等. 汽蒸处理对苦荞麦粉物化和结构特征的影响[J]. 食品与发酵工业,2019,45(13):148−153. [LI R, LI Y L, HOU L R, et al. Effects of steaming on physicochemical and structural properties of tartary buck wheat flour[J]. Food and Fermentation Industries,2019,45(13):148−153.

    LI R, LI Y L, HOU L R, et al. Effects of steaming on physicochemical and structural properties of tartary buck wheat flour[J]. Food and Fermentation Industries, 2019, 45(13): 148-153.
    [39]
    王宏伟, 丁江涛, 张艳艳, 等. 湿热处理对薏米淀粉聚集态结构及糊化特性的影响[J]. 食品科学,2020,41(17):111−117. [WANG H W, DING J T, ZHANG Y Y, et al. Impact of heat moisture treatment on the aggregation structure and pasting behavior of adlay starch[J]. Food Science,2020,41(17):111−117. doi: 10.7506/spkx1002-6630-20190802-036

    WANG H W, DING J T, ZHANG Y Y, et al. Impact of heat moisture treatment on the aggregation structure and pasting behavior of adlay starch[J]. Food Science, 2020, 41(17): 111-117. doi: 10.7506/spkx1002-6630-20190802-036
    [40]
    赵凯. 淀粉非化学改性技术[M]. 北京: 化学工业出版社, 2009: 29-30

    ZHAO K. Nonchemical modification of starch[M]. Beijing: Chemical Industry Press, 2009: 29-30.
  • Cited by

    Periodical cited type(2)

    1. 朱秀娟,孙娜,陈文东,聂龙英,王林林. 核桃花护色保脆技术研究. 宁夏师范学院学报. 2022(07): 52-58 .
    2. 王纪辉,曾亚军,侯娜,耿阳阳,胡伯凯,刘亚娜,张时馨,杨光. 曲面响应法优化核桃雄花多酚提取工艺及其组成与抗氧化活性分析. 南方农业学报. 2022(10): 2997-3008 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (286) PDF downloads (25) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return