Citation: | SU Dan, YANG Yang, FAN Jing, et al. Preparation and Properties Characterization of Rice Protein-Sodium Alginate IPN Hydrogel[J]. Science and Technology of Food Industry, 2022, 43(13): 56−62. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100053. |
[1] |
UGWU C U, TOKIWA Y, AOYAGI H. Utilization of broken rice for the production of poly (3-hydroxybutyrate)[J]. Journal of Polymers and the Environment,2012,20(1):254−257. doi: 10.1007/s10924-011-0392-3
|
[2] |
UDACHAN I, SAHOO A K. Quality evaluation of gluten free protein rich broken rice pasta[J]. Journal of Food Measurement and Characterization,2017,11(3):1378−1385. doi: 10.1007/s11694-017-9516-3
|
[3] |
RAINA C S, SINGH S, BAWA A S, et al. Textural characteristics of pasta made from rice flour supplemented with proteins and hydrocolloids[J]. Journal of Texture Studies,2005,36(4):402−420. doi: 10.1111/j.1745-4603.2005.00024.x
|
[4] |
SUN X D, ARNTFIELD S D. Gelation properties of chicken myofibrillar protein induced by transglutaminase cross linking[J]. Journal of Food Engineering,2011,107(2):226−233. doi: 10.1016/j.jfoodeng.2011.06.019
|
[5] |
FANG Y, LIU Q, ZHU S. Selective biosorption mechanism of methylene blue by a novel and reusable sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel[J]. International Journal of Biological Macromolecules,2021,188:993−1002. doi: 10.1016/j.ijbiomac.2021.07.192
|
[6] |
LACOSTE C, EL HAGE R, BERGERET A, et al. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation[J]. Carbohydrate Polymers,2018,184:1−8. doi: 10.1016/j.carbpol.2017.12.019
|
[7] |
ZHANG R, LEI L, SONG Q, et al. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release[J]. Colloids and Surfaces B:Biointerfaces,2019,175:569−575. doi: 10.1016/j.colsurfb.2018.11.083
|
[8] |
NIU Y, XIA Q, LI N, et al. Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking[J]. Food Chemistry,2019,270:223−228. doi: 10.1016/j.foodchem.2018.07.105
|
[9] |
SUN J, ZHAO X, ILLEPERUMA W R, et al. Highly stretchable and tough hydrogels[J]. Nature,2012,489(7414):133−136. doi: 10.1038/nature11409
|
[10] |
GULREZ S K, AL-ASSAF S, PHILLIPS G O. Hydrogels: Methods of preparation, characterisation and applications[J]. Progress in Molecular and Environmental Bioengineering,2011:117−150.
|
[11] |
BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106−116. doi: 10.1016/j.carbpol.2018.10.006
|
[12] |
CAO Y, MEZZENGA R. Design principles of food gels[J]. Nature Food,2020,1(2):106−118. doi: 10.1038/s43016-019-0009-x
|
[13] |
WANG J, WEI J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J]. Materials Science and Engineering:C,2017,80:460−467. doi: 10.1016/j.msec.2017.06.018
|
[14] |
DU M, LU W, ZHANG Y, et al. Natural polymer-sourced interpenetrating network hydrogels: Fabrication, properties, mechanism and food applications[J]. Trends in Food Science & Technology,2021,116:342−356.
|
[15] |
WEN C, LU L, LI X. Mechanically robust gelatin-alginate IPN hydrogels by a combination of enzymatic and ionic crosslinking approaches[J]. Macromolecular Materials and Engineering,2014,299(4):504−513. doi: 10.1002/mame.201300274
|
[16] |
WANG Y R, YANG Q, LI-SHA Y J, et al. Structural, gelation properties and microstructure of rice glutelin/sugar beet pectin composite gels: Effects of ionic strengths[J]. Food Chemistry,2021,346:128956. doi: 10.1016/j.foodchem.2020.128956
|
[17] |
赵卿宇, 林佳慧, 沈群. 储藏温度对大米蛋白功能特性的影响[J]. 食品科学,2021,42(13):200−207. [ZHAO Q Y, LIN J H, SHEN Q. Effects of the storage temperature on the functional properties of the rice protein[J]. Food Science,2021,42(13):200−207. doi: 10.7506/spkx1002-6630-20200720-256
ZHAO Q Y, LIN J H, SHEN Q. Effects of the storage temperature on the functional properties of the rice protein[J]. Food Science, 2021, 42 (13): 200-207. doi: 10.7506/spkx1002-6630-20200720-256
|
[18] |
NIU H, XIA X, WANG C, et al. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating[J]. Food Chemistry,2018,242:188−195. doi: 10.1016/j.foodchem.2017.09.055
|
[19] |
WU C L, MCCLEMENTS D J, HE M, et al. Preparation of okara cellulose hydrogels using ionic liquids: Structure, properties, and performance[J]. Journal of Molecular Liquids,2021,331:115744. doi: 10.1016/j.molliq.2021.115744
|
[20] |
ZHONG Y, ZHAO J, DAI T, et al. The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels[J]. Food Hydrocolloids,2021,113:106444. doi: 10.1016/j.foodhyd.2020.106444
|
[21] |
任艳艳. κ-卡拉胶/魔芋葡甘聚糖复合水凝胶机械性能强化与表征[D]. 武汉: 华中农业大学, 2020
REN Y Y. Mechanical reinforcement and characterization of κ-cargel/konjac gluganoglycan composite hydrogel[D]. Wuhan: Central China Agricultural University, 2020.
|
[22] |
余永名, 仪淑敏, 徐永霞, 等. 鲢鱼与金线鱼混合鱼糜的凝胶特性[J]. 食品科学,2016,37(5):17−22. [YU Y M, YI S M, XU Y X, et al. Gel properties of mixed surimi from silver carp and Nemipterus virgatus[J]. Food Science,2016,37(5):17−22.
YU Y M, YI S M, XU Y X, et al. Gel properties of mixed surimi from silver carp and nemipterus virgatus[J]. Food Science, 2016, 37 (5): 17-22.
|
[23] |
ACAR H, KURT A. Purified salep glucomannan synergistically interacted with xanthan gum: Rheological and textural studies on a novel pH-/thermo-sensitive hydrogel[J]. Food Hydrocolloids,2020,101:105463. doi: 10.1016/j.foodhyd.2019.105463
|
[24] |
MORENO H M, HERRANZ B, BORDERÍAS A J, et al. Effect of high pressure treatment on the structural, mechanical and rheological properties of glucomannan gels[J]. Food Hydrocolloids,2016,60:437−444. doi: 10.1016/j.foodhyd.2016.04.015
|
[25] |
KANG G, YANG H, JEONG J, et al. Gel color and texture of surimi-like pork from muscles at different rigor states post-mortem[J]. Asian-Australasian Journal of Animal Sciences,2007,20(7):1127−1134. doi: 10.5713/ajas.2007.1127
|
[26] |
李梦珂. 多糖-鱼明胶复合体系的凝胶行为及其作用机理探讨[D]. 杭州: 浙江工业大学, 2017
LI M K. Study on the gel behavior and action mechanism of the polysaccharide-fish gelatin composite system[D]. Hangzhou: Zhejiang University of Technology, 2017.
|
[27] |
LE X T, TURGEON S L. Textural and waterbinding behaviors of β-lactoglobulin-xanthan gum electrostatic hydrogels in relation to their microstructure[J]. Food Hydrocolloids,2015,49:216−223. doi: 10.1016/j.foodhyd.2015.03.007
|
[28] |
YOON W B, GUNASEKARAN S, PARK J W. Characterization of thermorheological behavior of Alaska pollock and Pacific whiting surimi[J]. Journal of Food Science,2004,69(7):338−343.
|
[29] |
KATOCH A, CHOUDHURY A R. Understanding the rheology of novel guar-gellan gum composite hydrogels[J]. Materials Letters,2020,263:127234. doi: 10.1016/j.matlet.2019.127234
|
[30] |
DING J, ZHANG H, WANG W, et al. Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels[J]. European Polymer Journal,2021,147:110306. doi: 10.1016/j.eurpolymj.2021.110306
|
[31] |
陈思皓, 舒浩, 刘祖兰, 等. 丝素蛋白/琼脂糖水凝胶的制备及性能研究[J]. 蚕学通讯,2016,36(4):5−8. [CHEN S H, SHU H, LIU Z L, et al. Preparation and properties of serin protein/agarose hydrogels[J]. Silkology Communications,2016,36(4):5−8. doi: 10.3969/j.issn.1006-0561.2016.04.003
CHEN S H, SHU H, LIU Z L, et al. Preparation and properties of serin protein/agarose hydrogels[J]. Silkology Communications, 2016, 36 (4): 5-8. doi: 10.3969/j.issn.1006-0561.2016.04.003
|
[32] |
HU X, WANG Y, ZHANG L, et al. Morphological and mechanical properties of tannic acid/PAAm semi-IPN hydrogels for cell adhesion[J]. Polymer Testing,2017,61:314−323. doi: 10.1016/j.polymertesting.2017.05.034
|
[33] |
郭琦, 王欣, 刘宝林. κ-卡拉胶比例对明胶凝胶体系凝胶特性、水分分布及微观结构的影响[J]. 食品与发酵工业,2019,45(9):81−88. [GUO Q, WANG X, LIU B L. Effect of κ-cara ratio on gel properties, water distribution and microstructure of gelatin gel system[J]. Food and Fermentation Industry,2019,45(9):81−88.
GUO Q, WANG X, LIU B L. Effect of κ-cara ratio on gel properties, water distribution and microstructure of gelatin gel system[J]. Food and Fermentation Industry, 2019, 45 (9): 81-88.
|
[34] |
高子武, 吴丹璇, 王恒鹏, 等. 腌制方式对牛肉肌原纤维蛋白特性及水分分布的影响[J]. 食品与发酵工业,2021,47(24):179−186. [GAO Z W, WU D X, WANG H P, et al. Effect of curing method on beef myofibrinin properties and water distribution[J]. Food and Fermentation Industry,2021,47(24):179−186.
GAO Z W, WU D X, WANG H P, et al. Effect of curing method on beef myofibrinin properties and water distribution[J]. Food and Fermentation industry, 2021, 47(24): 179-186.
|
[35] |
PEARCE K L, ROSENVOLD K, ANDERSEN H J, et al. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review[J]. Meat Science,2011,89(2):111−124. doi: 10.1016/j.meatsci.2011.04.007
|
1. |
田金钞,刘莹,臧梁,王月月,尚珊,祁立波. 不同解冻方式对水产品品质影响研究进展. 食品研究与开发. 2023(12): 204-210 .
![]() | |
2. |
杨裕如,潘德胤,马金明,姜晓娟,陈洪生,刁静静. 超声处理修饰羊肌肉蛋白结构改善嫩度的研究. 食品工业科技. 2023(21): 45-53 .
![]() | |
3. |
张茸茸,刘佳丽,李亦凡,张月美,曹锦轩. 超声技术对肌原纤维蛋白结构的影响及其在肌肉食品中的应用现状. 食品安全质量检测学报. 2023(21): 10-19 .
![]() | |
4. |
孙俪娜,祁岩龙,刘峰娟,徐艳文,于洋,张忆洁. 不同解冻方式对速冻洋芋鱼鱼质构特性的影响. 农产品加工. 2022(14): 10-13 .
![]() | |
5. |
邱泽慧,郑尧,王锡昌. 解冻方式对养殖暗纹东方鲀持水性及质构特性的影响. 食品科学. 2022(17): 56-63 .
![]() | |
6. |
江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 .
![]() | |
7. |
田方,顾笑寒,孙志栋,何龙,蔡路昀. 新型解冻技术及其对鱼肉品质影响的研究进展. 食品安全质量检测学报. 2022(21): 7049-7056 .
![]() | |
8. |
金子纯,赵育茗,张明成,郭芮,刘登勇. 肉类解冻工艺研究进展. 肉类研究. 2022(12): 57-66 .
![]() | |
9. |
韩敏义,田惠鑫,曾宪明,张馨月,尹家琪,侯钰柯,白云,唐长波,徐幸莲. 磁性纳米粒子辅助加热技术在鱼类解冻中的应用. 食品与生物技术学报. 2021(10): 1-6 .
![]() |