SU Dan, YANG Yang, FAN Jing, et al. Preparation and Properties Characterization of Rice Protein-Sodium Alginate IPN Hydrogel[J]. Science and Technology of Food Industry, 2022, 43(13): 56−62. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100053.
Citation: SU Dan, YANG Yang, FAN Jing, et al. Preparation and Properties Characterization of Rice Protein-Sodium Alginate IPN Hydrogel[J]. Science and Technology of Food Industry, 2022, 43(13): 56−62. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100053.

Preparation and Properties Characterization of Rice Protein-Sodium Alginate IPN Hydrogel

More Information
  • Received Date: October 11, 2021
  • Available Online: April 22, 2022
  • In order to meet the demand of high mechanical strength hydrogels in the food field, broken rice protein and sodium alginate were used as the main raw materials to prepare a food-grade broken rice protein (RP)-sodium alginate (SA) interpenetrating polymer network (IPN) hydrogels with high mechanical properties through heat treatment and ion cross-linking in this study. The mechanical properties of IPN hydrogels were adjusted by changing the concentration of rice protein (80, 100, 120, 140, 160 mg/mL) in the gel system of rice protein and sodium alginate, and the properties of the hydrogels, such as texture, rheological properties, whiteness, swelling and water content, were measured after the mixture was heated and Ca2+ cross linked. The results showed that: With the increase of the concentration of broken rice protein in the gel system, the storage modulus G', loss modulus G" and gel hardness of RP-SA IPN hydrogels increased. When the broken rice protein concentration was 140 mg/mL, the increase of gel hardness became smaller. The swelling property of hydrogels first decreased and then tended to be flat, but the water distribution was more uniform. Therefore, proper amount of broken rice protein could fill the RP-SA IPN hydrogels network very well, and the morphology of the hydrogel was not changed greatly. At the same time, the mechanical properties of hydrogels could be regulated by regulating the amount of protein added. This study provides a theoretical basis for the application of rice protein in the field of food.
  • [1]
    UGWU C U, TOKIWA Y, AOYAGI H. Utilization of broken rice for the production of poly (3-hydroxybutyrate)[J]. Journal of Polymers and the Environment,2012,20(1):254−257. doi: 10.1007/s10924-011-0392-3
    [2]
    UDACHAN I, SAHOO A K. Quality evaluation of gluten free protein rich broken rice pasta[J]. Journal of Food Measurement and Characterization,2017,11(3):1378−1385. doi: 10.1007/s11694-017-9516-3
    [3]
    RAINA C S, SINGH S, BAWA A S, et al. Textural characteristics of pasta made from rice flour supplemented with proteins and hydrocolloids[J]. Journal of Texture Studies,2005,36(4):402−420. doi: 10.1111/j.1745-4603.2005.00024.x
    [4]
    SUN X D, ARNTFIELD S D. Gelation properties of chicken myofibrillar protein induced by transglutaminase cross linking[J]. Journal of Food Engineering,2011,107(2):226−233. doi: 10.1016/j.jfoodeng.2011.06.019
    [5]
    FANG Y, LIU Q, ZHU S. Selective biosorption mechanism of methylene blue by a novel and reusable sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel[J]. International Journal of Biological Macromolecules,2021,188:993−1002. doi: 10.1016/j.ijbiomac.2021.07.192
    [6]
    LACOSTE C, EL HAGE R, BERGERET A, et al. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation[J]. Carbohydrate Polymers,2018,184:1−8. doi: 10.1016/j.carbpol.2017.12.019
    [7]
    ZHANG R, LEI L, SONG Q, et al. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release[J]. Colloids and Surfaces B:Biointerfaces,2019,175:569−575. doi: 10.1016/j.colsurfb.2018.11.083
    [8]
    NIU Y, XIA Q, LI N, et al. Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking[J]. Food Chemistry,2019,270:223−228. doi: 10.1016/j.foodchem.2018.07.105
    [9]
    SUN J, ZHAO X, ILLEPERUMA W R, et al. Highly stretchable and tough hydrogels[J]. Nature,2012,489(7414):133−136. doi: 10.1038/nature11409
    [10]
    GULREZ S K, AL-ASSAF S, PHILLIPS G O. Hydrogels: Methods of preparation, characterisation and applications[J]. Progress in Molecular and Environmental Bioengineering,2011:117−150.
    [11]
    BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106−116. doi: 10.1016/j.carbpol.2018.10.006
    [12]
    CAO Y, MEZZENGA R. Design principles of food gels[J]. Nature Food,2020,1(2):106−118. doi: 10.1038/s43016-019-0009-x
    [13]
    WANG J, WEI J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J]. Materials Science and Engineering:C,2017,80:460−467. doi: 10.1016/j.msec.2017.06.018
    [14]
    DU M, LU W, ZHANG Y, et al. Natural polymer-sourced interpenetrating network hydrogels: Fabrication, properties, mechanism and food applications[J]. Trends in Food Science & Technology,2021,116:342−356.
    [15]
    WEN C, LU L, LI X. Mechanically robust gelatin-alginate IPN hydrogels by a combination of enzymatic and ionic crosslinking approaches[J]. Macromolecular Materials and Engineering,2014,299(4):504−513. doi: 10.1002/mame.201300274
    [16]
    WANG Y R, YANG Q, LI-SHA Y J, et al. Structural, gelation properties and microstructure of rice glutelin/sugar beet pectin composite gels: Effects of ionic strengths[J]. Food Chemistry,2021,346:128956. doi: 10.1016/j.foodchem.2020.128956
    [17]
    赵卿宇, 林佳慧, 沈群. 储藏温度对大米蛋白功能特性的影响[J]. 食品科学,2021,42(13):200−207. [ZHAO Q Y, LIN J H, SHEN Q. Effects of the storage temperature on the functional properties of the rice protein[J]. Food Science,2021,42(13):200−207. doi: 10.7506/spkx1002-6630-20200720-256

    ZHAO Q Y, LIN J H, SHEN Q. Effects of the storage temperature on the functional properties of the rice protein[J]. Food Science, 2021, 42 (13): 200-207. doi: 10.7506/spkx1002-6630-20200720-256
    [18]
    NIU H, XIA X, WANG C, et al. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating[J]. Food Chemistry,2018,242:188−195. doi: 10.1016/j.foodchem.2017.09.055
    [19]
    WU C L, MCCLEMENTS D J, HE M, et al. Preparation of okara cellulose hydrogels using ionic liquids: Structure, properties, and performance[J]. Journal of Molecular Liquids,2021,331:115744. doi: 10.1016/j.molliq.2021.115744
    [20]
    ZHONG Y, ZHAO J, DAI T, et al. The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels[J]. Food Hydrocolloids,2021,113:106444. doi: 10.1016/j.foodhyd.2020.106444
    [21]
    任艳艳. κ-卡拉胶/魔芋葡甘聚糖复合水凝胶机械性能强化与表征[D]. 武汉: 华中农业大学, 2020

    REN Y Y. Mechanical reinforcement and characterization of κ-cargel/konjac gluganoglycan composite hydrogel[D]. Wuhan: Central China Agricultural University, 2020.
    [22]
    余永名, 仪淑敏, 徐永霞, 等. 鲢鱼与金线鱼混合鱼糜的凝胶特性[J]. 食品科学,2016,37(5):17−22. [YU Y M, YI S M, XU Y X, et al. Gel properties of mixed surimi from silver carp and Nemipterus virgatus[J]. Food Science,2016,37(5):17−22.

    YU Y M, YI S M, XU Y X, et al. Gel properties of mixed surimi from silver carp and nemipterus virgatus[J]. Food Science, 2016, 37 (5): 17-22.
    [23]
    ACAR H, KURT A. Purified salep glucomannan synergistically interacted with xanthan gum: Rheological and textural studies on a novel pH-/thermo-sensitive hydrogel[J]. Food Hydrocolloids,2020,101:105463. doi: 10.1016/j.foodhyd.2019.105463
    [24]
    MORENO H M, HERRANZ B, BORDERÍAS A J, et al. Effect of high pressure treatment on the structural, mechanical and rheological properties of glucomannan gels[J]. Food Hydrocolloids,2016,60:437−444. doi: 10.1016/j.foodhyd.2016.04.015
    [25]
    KANG G, YANG H, JEONG J, et al. Gel color and texture of surimi-like pork from muscles at different rigor states post-mortem[J]. Asian-Australasian Journal of Animal Sciences,2007,20(7):1127−1134. doi: 10.5713/ajas.2007.1127
    [26]
    李梦珂. 多糖-鱼明胶复合体系的凝胶行为及其作用机理探讨[D]. 杭州: 浙江工业大学, 2017

    LI M K. Study on the gel behavior and action mechanism of the polysaccharide-fish gelatin composite system[D]. Hangzhou: Zhejiang University of Technology, 2017.
    [27]
    LE X T, TURGEON S L. Textural and waterbinding behaviors of β-lactoglobulin-xanthan gum electrostatic hydrogels in relation to their microstructure[J]. Food Hydrocolloids,2015,49:216−223. doi: 10.1016/j.foodhyd.2015.03.007
    [28]
    YOON W B, GUNASEKARAN S, PARK J W. Characterization of thermorheological behavior of Alaska pollock and Pacific whiting surimi[J]. Journal of Food Science,2004,69(7):338−343.
    [29]
    KATOCH A, CHOUDHURY A R. Understanding the rheology of novel guar-gellan gum composite hydrogels[J]. Materials Letters,2020,263:127234. doi: 10.1016/j.matlet.2019.127234
    [30]
    DING J, ZHANG H, WANG W, et al. Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels[J]. European Polymer Journal,2021,147:110306. doi: 10.1016/j.eurpolymj.2021.110306
    [31]
    陈思皓, 舒浩, 刘祖兰, 等. 丝素蛋白/琼脂糖水凝胶的制备及性能研究[J]. 蚕学通讯,2016,36(4):5−8. [CHEN S H, SHU H, LIU Z L, et al. Preparation and properties of serin protein/agarose hydrogels[J]. Silkology Communications,2016,36(4):5−8. doi: 10.3969/j.issn.1006-0561.2016.04.003

    CHEN S H, SHU H, LIU Z L, et al. Preparation and properties of serin protein/agarose hydrogels[J]. Silkology Communications, 2016, 36 (4): 5-8. doi: 10.3969/j.issn.1006-0561.2016.04.003
    [32]
    HU X, WANG Y, ZHANG L, et al. Morphological and mechanical properties of tannic acid/PAAm semi-IPN hydrogels for cell adhesion[J]. Polymer Testing,2017,61:314−323. doi: 10.1016/j.polymertesting.2017.05.034
    [33]
    郭琦, 王欣, 刘宝林. κ-卡拉胶比例对明胶凝胶体系凝胶特性、水分分布及微观结构的影响[J]. 食品与发酵工业,2019,45(9):81−88. [GUO Q, WANG X, LIU B L. Effect of κ-cara ratio on gel properties, water distribution and microstructure of gelatin gel system[J]. Food and Fermentation Industry,2019,45(9):81−88.

    GUO Q, WANG X, LIU B L. Effect of κ-cara ratio on gel properties, water distribution and microstructure of gelatin gel system[J]. Food and Fermentation Industry, 2019, 45 (9): 81-88.
    [34]
    高子武, 吴丹璇, 王恒鹏, 等. 腌制方式对牛肉肌原纤维蛋白特性及水分分布的影响[J]. 食品与发酵工业,2021,47(24):179−186. [GAO Z W, WU D X, WANG H P, et al. Effect of curing method on beef myofibrinin properties and water distribution[J]. Food and Fermentation Industry,2021,47(24):179−186.

    GAO Z W, WU D X, WANG H P, et al. Effect of curing method on beef myofibrinin properties and water distribution[J]. Food and Fermentation industry, 2021, 47(24): 179-186.
    [35]
    PEARCE K L, ROSENVOLD K, ANDERSEN H J, et al. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review[J]. Meat Science,2011,89(2):111−124. doi: 10.1016/j.meatsci.2011.04.007
  • Cited by

    Periodical cited type(9)

    1. 田金钞,刘莹,臧梁,王月月,尚珊,祁立波. 不同解冻方式对水产品品质影响研究进展. 食品研究与开发. 2023(12): 204-210 .
    2. 杨裕如,潘德胤,马金明,姜晓娟,陈洪生,刁静静. 超声处理修饰羊肌肉蛋白结构改善嫩度的研究. 食品工业科技. 2023(21): 45-53 . 本站查看
    3. 张茸茸,刘佳丽,李亦凡,张月美,曹锦轩. 超声技术对肌原纤维蛋白结构的影响及其在肌肉食品中的应用现状. 食品安全质量检测学报. 2023(21): 10-19 .
    4. 孙俪娜,祁岩龙,刘峰娟,徐艳文,于洋,张忆洁. 不同解冻方式对速冻洋芋鱼鱼质构特性的影响. 农产品加工. 2022(14): 10-13 .
    5. 邱泽慧,郑尧,王锡昌. 解冻方式对养殖暗纹东方鲀持水性及质构特性的影响. 食品科学. 2022(17): 56-63 .
    6. 江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 . 本站查看
    7. 田方,顾笑寒,孙志栋,何龙,蔡路昀. 新型解冻技术及其对鱼肉品质影响的研究进展. 食品安全质量检测学报. 2022(21): 7049-7056 .
    8. 金子纯,赵育茗,张明成,郭芮,刘登勇. 肉类解冻工艺研究进展. 肉类研究. 2022(12): 57-66 .
    9. 韩敏义,田惠鑫,曾宪明,张馨月,尹家琪,侯钰柯,白云,唐长波,徐幸莲. 磁性纳米粒子辅助加热技术在鱼类解冻中的应用. 食品与生物技术学报. 2021(10): 1-6 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (349) PDF downloads (32) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return