Citation: | FENG Xirui, MA Yanshi, WU Xiaoling, et al. Non-targeted Metabolomics Analysis of the Effects of Arabinogalactan on the Metabolites of Akkermansia muciniphila[J]. Science and Technology of Food Industry, 2022, 43(7): 21−34. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100007. |
[1] |
LI B B, HONG Y, GU Y, et al. Functional metabolomics reveals that astragalus polysaccharides improve lipids metabolism through microbial metabolite 2-hydroxybutyric acid in obese mice[J]. Engineering, 2020. https://doi.org/10.1016/j.eng.2020.05.023
|
[2] |
GUO C, GUO D, FANG L, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon[J]. Carbohydrate Polymers,2021,267(2):118231.
|
[3] |
LIN T L, LU C C, LAI W F, et al. Role of gut microbiota in identification of novel TCM-derived active metabolites[J]. Protein & Cell,2020,12(5):394−410.
|
[4] |
WANG Y, LAPOINTE G. Arabinogalactan utilization by Bifidobacterium longum subsp. longum NCC 2705 and Bacteroides caccae ATCC 43185 in monoculture and coculture[J]. Microorganisms,2020,8(11):1703. doi: 10.3390/microorganisms8111703
|
[5] |
HAUER J, ANDERER F A. Mechanism of stimulation of human natural killer cytotoxicity by arabinogalactan from Larix occidentalis[J]. Cancer Immunology Immunotherapy,1993,36(4):237−244. doi: 10.1007/BF01740905
|
[6] |
孙拿拿, 崔文明, 张馨, 等. 阿拉伯半乳聚糖的毒理学安全性评价研究[J]. 毒理学杂志,2017,31(4):321−325. [SUN Nana, CUI Wengming, ZHANG Xin, et al. Study on toxicological safety evaluation of arabinogalactan[J]. Journal of Toxicology,2017,31(4):321−325.
|
[7] |
CROCIANI F, ALESSANDRINI A, MUCCI M M, et al. Degradation of complex carbohydrates by Bifidobacterium spp.[J]. Int J Fd Microbiol,1994,24(1−2):199. doi: 10.1016/0168-1605(94)90119-8
|
[8] |
KELLY G S. Larch arabinogalactan: Clinical relevance of a novel immune-enhancing polysaccharide[J]. Alternative Medicine Review A Journal of Clinical Therapeutic,1999,4(2):96.
|
[9] |
BAHRAMZADEH S, TABARSA M, YOU S G, et al. An arabinogalactan isolated from Boswellia carterii: Purification, structural elucidation and macrophage stimulation via NF-κB and MAPK pathways[J]. Journal of Functional Foods,2018,52:450−458.
|
[10] |
LI H, XIE W B, QIAO X A, et al. Structural characterization of arabinogalactan extracted from Ixeris chinensis (Thunb.) Nakai and its immunomodulatory effect on RAW264.7 macrophages[J]. International Journal of Biological Macromolecules,2020,143:977−983. doi: 10.1016/j.ijbiomac.2019.09.158
|
[11] |
VELIKOVA T, TUMANGELOVA-YUZEIR K, GEORGIEVA R, et al. Lactobacilli supplemented with larch arabinogalactan and colostrum stimulates an immune response towards peripheral NK activation and gut tolerance[J]. Nutrients,2020,12(6):1706.
|
[12] |
ZAVISTANAVICIUTE P, LELE V, ANTANAITIS R, et al. Separate and synergic effects of Lactobacillus uvarum LUHSS245 and arabinogalactan on the in vitro antimicrobial properties as well as on the fecal and metabolic profile of newborn calves[J]. Animals,2020,10(4):593−607. doi: 10.3390/ani10040593
|
[13] |
PW O’ T, MARCHESI J R, HIll C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics[J]. Nat Microbiol,2017,2:17057. doi: 10.1038/nmicrobiol.2017.57
|
[14] |
BÁRCENA C, VALDÉS-MAS R, MAYORAL P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice[J]. Nat Med,2019,25:1234−1242. doi: 10.1038/s41591-019-0504-5
|
[15] |
KONG F L, HUA Y T, ZENG B, et al. Gut microbiota signatures of longevity[J]. Current Biology,2016,26(18):832−833. doi: 10.1016/j.cub.2016.08.015
|
[16] |
CANI P D, DE V. Next-generation beneficial microbes: The case of Akkermansia muciniphila[J]. Frontiers in Microbiology,2017,8:1765. doi: 10.3389/fmicb.2017.01765
|
[17] |
GRANDER C, ADOLPH T E, WIESER V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease[J]. Gut,2018,67(5):891−901. doi: 10.1136/gutjnl-2016-313432
|
[18] |
WANG Lijuan, TANG Lei, FENG Yiming, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut,2020,69(11):1988−1997. doi: 10.1136/gutjnl-2019-320105
|
[19] |
ZHANG Ting, JI Xinghui, LU Gaochen, et al. The potential of Akkermansia muciniphila in inflammatory bowel disease[J]. Applied Microbiology and Biotechnology,2021,105:5785−5794. doi: 10.1007/s00253-021-11453-1
|
[20] |
LI Jing, ZHAO Fangqing, WANG Yidan, et al. Gut microbiota dysbiosis contributes to the development of hypertension[J]. Microbiome,2017,5(1):14−33. doi: 10.1186/s40168-016-0222-x
|
[21] |
ZHANG Ting, LI Qianqian, CHENG Lei, et al. Akkermansia muciniphila is a promising probiotic[J]. Microbial Biotechnology,2019,12(6):1109−1125. doi: 10.1111/1751-7915.13410
|
[22] |
MITHIEUX G. Does Akkermansia muciniphila play a role in type 1 diabetes?[J]. Gut,2018,67(8):1373−1374. doi: 10.1136/gutjnl-2017-315732
|
[23] |
WU Jiayu, WANG Kai, WANG Xuemei, et al. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein & Cell,2021,12:360−373.
|
[24] |
OTTMAN N, DAVIDS M, SUAREZ-DIEZ M, et al. Genomescale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle[J]. Appl Environ Microbiol,2017,83(18):e01014−e01017.
|
[25] |
SURIANO F, BINDELS L B, VERSPREET J, et al. Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity[J]. Scientific Reports,2017,7(1):5621. doi: 10.1038/s41598-017-05698-y
|
[26] |
逄晓阳, 吕加平. 阿克曼粘细菌培养基及其制备方法: CN107384828A[P]. 2017-11-24.
YUN Xiaoyang, LV Jiaping. Ackermann myxobacteria culture medium and its preparation method: CN107384828A[P]. 2017-11-24
|
[27] |
LIU Xinyue, ZHAO Fan, LIU Hui, et al. Transcriptomics and metabolomics reveal the adaption of Akkermansia muciniphila to high mucin by regulating energy homeostasis[J]. Scientific Reports,2021,11:9073. doi: 10.1038/s41598-021-88397-z
|
[28] |
提盼盼. Akkermansia muciniphila益生元的体外筛选及体内作用效果评价[D]. 天津: 天津科技大学, 2018: 10−13.
TI Panpan. In vitro screening and in vivo effect evaluation of Akkermansia muciniphila prebiotics[D]. Tianjin: Tianjin University of Science and Technology, 2018: 10−13
|
[29] |
时秋菊. 利用发酵上清液制备活性乳酸菌饮料的生产工艺探讨[J]. 食品安全导刊,2018(6):116−116. [SHI Qiuju. Discussion on the production process of active lactic acid bacteria beverage prepared from fermentation supernatant[J]. Food Safety Guide,2018(6):116−116.
|
[30] |
王倩, 张长青, 李广平, 等. 基于UPLC-QTOF/MS的蓝莓果实发育代谢组学差异分析[J]. 江苏农业科学,2020,48(24):148−152. [WANG Qian, ZHANG Changqing, LI Guangping, et al. Differential analysis of blueberry fruit development metabolomics based on UPLC-QTOF/MS[J]. Jiangsu Agricultural Science,2020,48(24):148−152.
|
[31] |
HUANG Q, TAN Y, YIN P, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Research,2013,73(16):4992−5002. doi: 10.1158/0008-5472.CAN-13-0308
|
[32] |
DUNN W B, ERBAN A, WEBER R J M, et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics[J]. Metabolomics,2013,9(1):S44−S66. doi: 10.1007/s11306-012-0427-3
|
[33] |
吴艳丽, 刘朋, 苏咏欣, 等. 嗜黏蛋白阿克曼氏菌ATCC BAA-835肠道益生作用的体外评价[J]. 食品与发酵工业,2021:1−10. [WU Yanli, LIU Peng, SU Yongxin, et al. In vitro evaluation of intestinal prebiotic effect of Ackermann mucophilus ATCC Baa-835[J]. Food and Fermentation Industry,2021:1−10.
|
[34] |
顾效瑜, 李哲, 郑毅男, 等. 次黄嘌呤对小鼠脂质代谢的影响[J]. 吉林农业大学报,2017,39(3):337−342,348. [GU Xiaoyu, LI Zhe, ZHENG Yinan, et al. Effect of hypoxanthine on lipid metabolism in mice[J]. Journal of Jilin Agricultural University,2017,39(3):337−342,348.
|
[35] |
MINAL M, SNEHAL S, SHOVONLAL B, et al. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity[J]. Biophysical Chemistry,2021,273:106588. doi: 10.1016/j.bpc.2021.106588
|
[36] |
BARTOLOMAEUS H, BALOGH A, YAKOUB M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage[J]. Circulation,2019,139(11):1407−1421. doi: 10.1161/CIRCULATIONAHA.118.036652
|
[37] |
XIANG Caigui, LIU Moting, LU Qiukai, et al. Blockade of TLRs-triggered macrophage activation by caffeic acid exerted protective effects on experimental ulcerative colitis[J]. Cellular Immunology,2021,365:104364. doi: 10.1016/j.cellimm.2021.104364
|
[38] |
LI Daotong, FENG Yu, TIAN Meiling, et al. Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation[J]. Microbiome,2021,9(1):83−107. doi: 10.1186/s40168-021-01028-7
|
[39] |
WANG Yaozhen, FU Wenwen, XUE Yan, et al. Ginsenoside Rc ameliorates endothelial insulin resistance via upregulation of angiotensin-converting enzyme 2[J]. Frontiers in pharmacology,2021,12:620524. doi: 10.3389/fphar.2021.620524
|
[40] |
WANG Xinyi, SUN Guangqiang, FENG Teng, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression[J]. Cell Research,2019,29:787−803. doi: 10.1038/s41422-019-0216-x
|
[41] |
DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nat Med,2019,25:1096−1103. doi: 10.1038/s41591-019-0495-2
|
1. |
张殿鹤,马云芳,牛力源,相启森. 大肠杆菌O157∶H7对牛至精油胁迫的分子响应研究. 中国食品添加剂. 2025(04): 40-48 .
![]() | |
2. |
舒明,潘凡达,边腾飞,袁凯龙,项波卡,张勇刚,杨洋,钟卫鸿. 造纸法再造烟叶浓缩液中抗逆酵母的分离鉴定与代谢活性研究. 轻工学报. 2023(01): 54-62 .
![]() | |
3. |
张蓝月,孙万成,罗毅皓. 基于非靶向代谢组学分析不同地区羊肉代谢物的差异. 现代食品科技. 2023(07): 91-101 .
![]() | |
4. |
赵电波,马燕青,王少丹,王雯雯. 基于非靶向代谢组学解析肉桂精油纳米乳抑制假单胞菌CM2作用机制研究. 食品工业科技. 2023(17): 168-175 .
![]() | |
5. |
玉霞,赵飞燕,孙志宏. 肠道中有益菌培养组学的研究进展. 食品科学. 2023(23): 365-371 .
![]() |