Citation: | LI Honglin, LI Yifang, ZHANG Chi, et al. Research Progress of Curcumin Intervening the Mycotoxin-induced Toxicity[J]. Science and Technology of Food Industry, 2022, 43(17): 494−500. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090341. |
[1] |
HORKY P, SKALICKOVA S, BAHOLET D, et al. Nanoparticles as a solution for eliminating the risk of mycotoxins[J]. Nanomaterials,2018,8(9):727. doi: 10.3390/nano8090727
|
[2] |
MU U, CG O, A M. An overview of mycotoxin contamination of foods and feeds[J]. Journal of Biochemical and Microbial Toxicology,2017,1(1):11.
|
[3] |
HAQUE M A, WANG Y, SHEN Z, et al. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review[J]. Microb Pathog,2020,142:104095.
|
[4] |
SUN Q Y, QIN X S, CAO M J, et al. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro[J]. Plos One,2015,10(6):0127551.
|
[5] |
YANG C, SONG G, LI M W. Effects of mycotoxin-contaminated feed on farm animals[J]. Journal of Hazardous Materials,2020,389:122087. doi: 10.1016/j.jhazmat.2020.122087
|
[6] |
BHARDWAJ H, SUMANA G, MARQUETTE C A. Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for aflatoxin B1 detection[J]. Talanta,2020,222:12578.
|
[7] |
CAI P R, ZHENG H, SHE J J, et al. Molecular mechanism of aflatoxin-induced hepatocellular carcinoma derived from a bioinformatics analysis[J]. Toxins (Basel),2020,12(3):203. doi: 10.3390/toxins12030203
|
[8] |
KORDASHT H K, HASANZADEH M. Specific monitoring of aflatoxin M1 in real samples using aptamer binding to DNFS based on turn-on method: A novel biosensor[J]. Journal of Molecular Recognition,2020,33(6):e2832.
|
[9] |
LI H, LI S, YANG H, et al. l-Proline alleviates kidney injury caused by AFB1 and AFM1 through regulating excessive apoptosis of kidney cells[J]. Toxins (Basel),2019,11(4):226. doi: 10.3390/toxins11040226
|
[10] |
DEY D K, SUN C K. Aflatoxin B1 induces reactive oxygen species-dependent caspase-mediated apoptosis in normal human cells, inhibits allium cepa root cell division, and triggers inflammatory response in zebrafish larvae-sciencedirect[J]. Science of the Total Environment,2020,737:139704. doi: 10.1016/j.scitotenv.2020.139704
|
[11] |
SOLIS-CRUZ B, HERNANDEZ-PATLAN D, PETRONE V, et al. Evaluation of cellulosic polymers and curcumin to reduce aflatoxin B1 toxic effects on performance, biochemical, and immunolo-gical parameters of broiler chickens[J]. Toxins,2019,11(2):121. doi: 10.3390/toxins11020121
|
[12] |
STOB M, BALDWIN R S, TUITE J, et al. Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae.[J]. Nature,1962,196(4861):1318.
|
[13] |
BIOMIN. Mycotoxins report-world mycotoxin survey[M]. 2020.
|
[14] |
SONG T T, YANG W R, HUANG L B, et al. Zearalenone exposure affects the wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro[J]. Animal Bioscience,2021,34(6):993−1005. doi: 10.5713/ajas.20.0292
|
[15] |
ZHAO L J, XIAO Y Y, LI C M, et al. Zearalenone perturbs the circadian clock and inhibits testosterone synthesis in mouse leydig cells[J]. Journal of Toxicology and Environmental Health Part A,2021,84(3):112−124. doi: 10.1080/15287394.2020.1841699
|
[16] |
WANG J J, LI M M, ZHANG W, et al. Protective effect of n-acetylcysteine against oxidative stress induced by zearalenone via mitochondrial apoptosis pathway in SIEC02 cells[J]. Toxins,2018,10(10):407. doi: 10.3390/toxins10100407
|
[17] |
REN Z, HE H, ZUO Z, et al. ROS: Trichothecenes' handy weapon?[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association,2020,142:111438. doi: 10.1016/j.fct.2020.111438
|
[18] |
KANG R F, LI R N, DAI P Y, et al. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production[J]. Environmental Pollution,2019,251(8):689−698.
|
[19] |
XIAO K, LIU C G, QIN Q, et al. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,2020,34(2):2483−2496. doi: 10.1096/fj.201902298R
|
[20] |
CAO L, JIANG Y J, ZHU L, et al. Deoxynivalenol induces caspase-8-mediated apoptosis through the mitochondrial pathway in hippocampal nerve cells of piglet[J]. Toxins (Basel),2021,13(2):73. doi: 10.3390/toxins13020073
|
[21] |
TAO Y, XIE S, XU F, et al. Ochratoxin A: Toxicity, oxidative stress and metabolism[J]. Food and Chemical Toxicology,2018,112:320−331. doi: 10.1016/j.fct.2018.01.002
|
[22] |
LEE H J, PYO M C, SHIN H S, et al. Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association,2018,122:59−68. doi: 10.1016/j.fct.2018.10.004
|
[23] |
HOU L, YUAN X, LE G N, et al. Fumonisin B1 induces nephrotoxicity via autophagy mediated by mTORC1 instead of mTORC2 in human renal tubule epithelial cells[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association,2021,149:112037.
|
[24] |
XU W X, WANG M Y, CUI G Y, et al. Astaxanthin protects OTA-induced lung injury in mice through the Nrf2/NF-κB pathway[J]. Toxins (Basel),2019,11(9):10.
|
[25] |
LU Y J, ZHANG Y, LIU J Q, et al. Comparison of the toxic effects of different mycotoxins on porcine and mouse oocyte meiosis[J]. PeerJ,2018,6:e5111. doi: 10.7717/peerj.5111
|
[26] |
CHEN J, WEI Z, WANG Y, et al. Fumonisin B (1): Mechanisms of toxicity and biological detoxification progress in animals[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association,2021,149:111977. doi: 10.1016/j.fct.2021.111977
|
[27] |
ARUMUGAM T, GHAZI T, CHUTURGOON A A. Fumonisin B (1) alters global m6A RNA methylation and epigenetically regulates Keap1-Nrf2 signaling in human hepatoma (HepG2) cells[J]. Arch Toxicol,2021,95:1367−1378. doi: 10.1007/s00204-021-02986-5
|
[28] |
WANGIA-DIXON R N, NISHIMWE K. Molecular toxicology and carcinogenesis of fumonisins: A review[J]. Journal of Environmental Science and Health Part C, Toxicology and Carcinogenesis,2021,39(1):44−67. doi: 10.1080/26896583.2020.1867449
|
[29] |
LEDUR P C, SANTURIO J M. Cytoprotective effects of curcumin and silymarin on PK-15 cells exposed to ochratoxin A, fumonisin B1 and deoxynivalenol[J]. Toxicon,2020,185:97−103. doi: 10.1016/j.toxicon.2020.06.025
|
[30] |
LOVATO F L, DE OLIVEIRA C R, ADEDARA I A, et al. Quercetin ameliorates polychlorinated biphenyls-induced testicular DNA damage in rats[J]. Andrologia,2016,48(1):51−58. doi: 10.1111/and.12417
|
[31] |
DANG Y H, LI Z L, WEI Q, et al. Protective effect of apigenin on acrylonitrile-induced inflammation and apoptosis in testicular cells via the NF-κB pathway in rats[J]. Inflammation,2018,41(4):1448−1459. doi: 10.1007/s10753-018-0791-x
|
[32] |
食品安全国家标准审评委员会. 食品安全国家标准食品添加剂使用标准: GB 2760-2014[S]. 北京: 中国质检出版社, 2014.
National Food Safety Standard Review Committee. National food safety standard food additives use standard: GB 2760-2014[S]. Beijing: China Quality Inspection Press, 2014.
|
[33] |
刘玲红, 许国娟, 程荣, 等. 不同环境因子对栀子黄/姜黄共混色素体系稳定性的影响[J]. 食品与发酵工业,2021,10:1−13. [LIU H L, XU G J, CHENG R, et al. Effects of different environmental factors on the stability of gardenia/turmeric blend pigment system[J]. Food And Fermentation Industry,2021,10:1−13. doi: 10.13995/j.cnki.11-1802/ts.028215
LIU H L, XU G J, CHEN R, et al. Effects of different environmental factors on the stability of gardenia/turmeric blend pigment system[J]. Food And Fermentation Industry, 2021, 10: 1-13. doi: 10.13995/j.cnki.11-1802/ts.028215
|
[34] |
SUZUKI M, NAKAMURA T, IYOKI S, et al. Elucidation of anti-allergic activities of curcumin-related compounds with a special reference to their anti-oxidative activities[J]. Biological & Pharmaceutical Bulletin,2005,28(8):1438−1443.
|
[35] |
XIANG L, HE B, LIU Q, et al. Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT-116 cells[J]. Oncology Reports,2020,44:1997−2008.
|
[36] |
NETA J F D F, VERAS V S, SOUSA D F D, et al. Effectiveness of the piperine-supplemented Curcuma longa L. in metabolic control of patients with type 2 diabetes: A randomised double-blind placebo-controlled clinical trial[J]. International Journal of Food Sciences and Nutrition,2021,72(3):1−10.
|
[37] |
LI S, MUHAMMAD I, YU H, et al. Detection of aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens[J]. Ecotoxicology and Environmental Safety,2019,176:137−145. doi: 10.1016/j.ecoenv.2019.03.089
|
[38] |
LIMAYE A, YU R C, CHOU C C, et al. Protective and detoxifying effects conferred by dietary selenium and curcumin against AFB1-mediated toxicity in livestock: A review[J]. Toxins,2018,10(1):25. doi: 10.3390/toxins10010025
|
[39] |
MUHAMMAD I, SUN X, WANG H, et al. Curcumin successfully inhibited the computationally identified CYP2A6 enzyme-mediated bioactivation of aflatoxin B1 in arbor acres broiler[J]. Frontiers in Pharmacology,2017,8:143.
|
[40] |
LI S H, LIU R M, WEI G Q, et al. Curcumin protects against aflatoxin B1-induced liver injury in broilers via the modulation of long non-coding RNA expression[J]. Ecotoxicol Environ Saf,2021,208:111725. doi: 10.1016/j.ecoenv.2020.111725
|
[41] |
VERMA R J, CHAKRABORTY B S, PATEL C, et al. Curcumin ameliorates aflatoxin-induced changes in SDH and ATPase activities in liver and kidney of mice[J]. Acta Poloniae Pharmaceutica,2008,65(4):415−419.
|
[42] |
RUAN D, WANG W C, LIN C X, et al. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A[J]. Animal,2018,13(1):42−52.
|
[43] |
CATANZARO M, CORSINI E, ROSINI M, et al. Immunomodulators inspired by nature: A review on curcumin and echinacea[J]. Molecules,2018,23(11):2778. doi: 10.3390/molecules23112778
|
[44] |
DAMIANO S, ANDRETTA E, LONGOBARDI C, et al. Effects of curcumin on the renal toxicity induced by ochratoxin A in rats[J]. Antioxidants,2020,9(4):332. doi: 10.3390/antiox9040332
|
[45] |
COSTA J G, SARAIVA N, GUERREIRO P S, et al. Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints[J]. Food and Chemical Toxicology,2016,87:65−76. doi: 10.1016/j.fct.2015.11.018
|
[46] |
ZHAI S S, RUAN D, ZHU Y W, et al. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota[J]. Poultry Science,2020,99(2):1124−1134. doi: 10.1016/j.psj.2019.10.041
|
[47] |
AHERN P P, MALOY K J. Understanding immune-microbiota interactions in the intestine[J]. Immunology,2020,159(1):4−14. doi: 10.1111/imm.13150
|
[48] |
SHIN N R, BOSE S, WANG J H, et al. Flos lonicera combined with metformin ameliorates hepatosteatosis and glucose intolerance in association with gut microbiota modulation[J]. Frontiers in Microbiology,2017,8:2271. doi: 10.3389/fmicb.2017.02271
|
[49] |
MOQUET P C A, ONRUST L, VAN IMMERSEEL F, et al. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract[J]. World's Poultry Science Journal,2019,72(1):61−80.
|
[50] |
CHEN S, YANG S H, WANG M, et al. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway[J]. Food and Chemical Toxicology,2020,141:111−385.
|
[51] |
WANG M Y, WANG N, TONG J J, et al. Transcriptome analysis to identify the ras and Rap1 signal pathway genes involved in the response of TM3 leydig cells exposed to zearalenone[J]. Environmental Science and Pollution Research,2018,25(31):31230−31239. doi: 10.1007/s11356-018-3129-1
|
[52] |
GALLI G M, GRISS L G, FORTUOSO B F, et al. Feed contaminated by fumonisin (Fusarium spp.) in chicks has a negative influence on oxidative stress and performance, and the inclusion of curcumin-loaded nanocapsules minimizes these effects[J]. Microbial Pathogenesis,2020,148:104−496.
|
[53] |
YIN S T, GUO X, LI J H, et al. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells[J]. Archives of Toxicology,2015,90(4):985−996.
|
[54] |
ASLAN A, AGAR G, ALPSOY L, et al. Protective role of methanol extracts of two lichens on oxidative and genotoxic damage caused by AFB1 in human lymphocytes in vitro[J]. Toxicology and Industrial Health,2011,28(6):505−512.
|
[55] |
AMALRAJ A, VARMA K, JACOB J, et al. Efficacy and safety of a gut health product (actbiome) prepared by incorporation of asafoetida-curcumin complex onto the turmeric dietary fiber in the management of gut health and intestinal microflora in healthy subjects: A randomized, double-blind, placebo controlled study[J]. Bioactive Carbohydrates and Dietary Fibre,2021,26:233−215.
|
[56] |
SAMY M, ABDELAZEEM M G, ASHRY M A, et al. Ameliorative effect of flavonoid antioxidant on the histology and ultrastructure of albino rats` liver treated with radiation and/or acrylonitrile[J]. Journal of Scientific Research in Science,2016,33(1):295−306.
|
[57] |
LAWAL A O. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and Ahr-mediated pathways[J]. Toxicol Lett,2017,270:88−95. doi: 10.1016/j.toxlet.2017.01.017
|
1. |
汪芸萱,应勇,黄丽,满念薇,徐玉玲,张军涛,许承志. 蚕丝蛋白的体外自组装动力学行为研究. 广州化工. 2024(23): 25-27+41 .
![]() |