ZHANG Chenchen, GUI Ya, HAN Yuemei, et al. Influence of Heat Pre-treatment and Oxidative Pre-treatment on the Spray Dried Powder of Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2022, 43(12): 132−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090329.
Citation: ZHANG Chenchen, GUI Ya, HAN Yuemei, et al. Influence of Heat Pre-treatment and Oxidative Pre-treatment on the Spray Dried Powder of Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2022, 43(12): 132−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090329.

Influence of Heat Pre-treatment and Oxidative Pre-treatment on the Spray Dried Powder of Lactobacillus rhamnosus

More Information
  • Received Date: September 27, 2021
  • Available Online: April 12, 2022
  • Spray drying is a commonly used method in the food industry since it is cost-effective and highly flexible, but spray drying typically results in lower survival rate of starter cultures than freeze-drying. In this study, the influence of heat pre-treatment (46 ℃, 1 h) and oxidative pre-treatment (0.5 mmol/L H2O2, 1 h) on the spray dried powder of Lactobacillus rhamnosus hsryfm 1301 was investigated. The results showed that heat pre-treatment and oxidative pre-treatment could improve the survival rate. The survival rate of the untreated group was only 29%, while the survival rates of heat pre-treated and oxidative pre-treated cells were 98% and 76%, which increased by 3.38 and 2.62 folds, respectively. At the same time, the acid-resistant of the untreated bacterial powder was 0.8%, while the acid-resistant survival rates of heat pre-treated and oxidative pre-treated bacterial powder were 76% and 72%, which increased by 95.0 and 92.5 times, respectively. Moreover, the heat pre-treated and oxidative pre-treated bacterial powder had good storage ability in the environment of −20 ℃. The survival rate of heat pre-treated bacterial powder remained greater than 80% after stored at −20 ℃ for 4 months, and that of oxidative pre-treated bacterial powder was greater than 40%. It was suggested that the strengthened heat stress and oxidative stress tolerance of L. rhamnosus hsryfm 1301 by heat pre-treatment and oxidative pre-treatment were helpful to survive spray drying.
  • [1]
    TRIPATHI M K, GIRI S K. Probiotic functional foods: Survival of probiotics during processing and storage[J]. Journal of Functional Foods,2014,9(9):225−241.
    [2]
    KARIMI R, MORTAZAVIAN A M, DA CRUZ A G. Viability of probiotic microorganisms in cheese during production and storage: A review[J]. Dairy Science and Technology,2011,91(3):283−308. doi: 10.1007/s13594-011-0005-x
    [3]
    PAPADIMITRIOU K, ALEGRÍA Á, BRON P A, et al. Stress physiology of lactic acid bacteria[J]. Microbiology and Molecular Biology Reviews,2016,80(3):837−890. doi: 10.1128/MMBR.00076-15
    [4]
    DIMITRELLOU D, KANDYLIS P, PETROVIĆ T, et al. Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk[J]. LWT - Food Science and Technology,2016,71:169−174. doi: 10.1016/j.lwt.2016.03.007
    [5]
    SIMPSON P J, STANTON C, FITZGERALD G F, et al. Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage[J]. Journal of Applied Microbiology,2005,99(3):493−501. doi: 10.1111/j.1365-2672.2005.02648.x
    [6]
    DIJKSTRA A R, SETYAWATI M C, BAYJANOV J R, et al. Diversity in robustness of Lactococcus lactis strains during heat stress, oxidative stress, and spray drying stress[J]. Applied and Environmental Microbiology,2014,80(2):603−611. doi: 10.1128/AEM.03434-13
    [7]
    CHEN D, YANG Z, CHEN X, et al. Effect of Lactobacillus rhamnosus hsryfm 1301 on the gut microbiota and lipid metabolism in rats fed a high-fat diet[J]. Journal of Microbiology and Biotechnology,2015,25(5):687−695. doi: 10.4014/jmb.1409.09085
    [8]
    ZHANG C, LU J, YANG D, et al. Stress influenced the aerotolerance of Lactobacillus rhamnosus hsryfm 1301[J]. Biotechnology Letters,2018,40(4):729−735. doi: 10.1007/s10529-018-2523-6
    [9]
    ZHANG C, GUI Y, CHEN X, et al. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress[J]. Applied Microbiology and Biotechnology,2020,104(6):2611−2621. doi: 10.1007/s00253-020-10407-3
    [10]
    SOLMAZ B, CHRISTOS S, LINA Y, et al. Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748[J]. Drying Technology,2013,31(11):1274−1283. doi: 10.1080/07373937.2013.788509
    [11]
    JIMMY P, MARTIJN B F, CHEN S, et al. Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1[J]. Food Research International,2014,56:9−17. doi: 10.1016/j.foodres.2013.12.007
    [12]
    ZHANG C, YANG L, DING Z, et al. New selective media for isolation and enumeration of Lactobacillus rhamnosus and Streptococcus thermophilus[J]. Journal of Food Measurement and Characterization,2019,13:1431−1439. doi: 10.1007/s11694-019-00059-x
    [13]
    TYMCZYSZYN E E, GÓMEZ-ZAVAGLIA A, DISALVO E A. Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. bulgaricus[J]. Journal of Applied Microbiology,2007,102(3):845−851. doi: 10.1111/j.1365-2672.2006.03108.x
    [14]
    WU Q, ZHANG C, WA Y, et al. Correlation between exopolysaccharide biosynthesis and gastrointestinal tolerance of Lactiplantibacillus plantarum[J]. Journal of Applied Microbiology, 2021,doi: 10.1111/JAM.15213.
    [15]
    SATU V, KARI S, SEPPO S. Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed[J]. International Journal of Food Microbiology,2012,157(2):319−321. doi: 10.1016/j.ijfoodmicro.2012.05.016
    [16]
    BARBOSA J, BORGES S, TEIXEIRA P. Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice[J]. Food Microbiology,2015,52:77−83. doi: 10.1016/j.fm.2015.06.010
    [17]
    PAÉZ R, LAVARI L, VINDEROLA G, et al. Effect of heat treatment and spray drying on Lactobacilli viability and resistance to simulated gastrointestinal digestion[J]. Food Research International,2012,48(2):748−754. doi: 10.1016/j.foodres.2012.06.018
    [18]
    DESMOND C, STANTON C, FITZGERALD G F, et al. Environmental adaptation of probiotic Lactobacilli towards improvement of performance during spray drying[J]. International Dairy Journal,2001,11(10):801−808. doi: 10.1016/S0958-6946(01)00121-2
    [19]
    GÉRALDINE B, DIETER V, INGMAR J J, et al. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics[J]. International Journal of Pharmaceutics,2016,505(1−2):303−318. doi: 10.1016/j.ijpharm.2016.04.002
    [20]
    PRASAD J, MCJARROW P, GOPAL P K. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying[J]. Applied and Environmental Microbiology,2003,69(2):917−925. doi: 10.1128/AEM.69.2.917-925.2003
    [21]
    陈大卫. 辅助降血脂益生乳酸菌的筛选及其对高血脂大鼠肠道菌群的影响[D]. 扬州: 扬州大学, 2015

    CHEN D W. Screening of auxiliary hypolipidemic properties of probiotic and its impact on the intestinal microbiota of hyperlipidemia rat model [D]. Yangzhou: Yangzhou University, 2015.
    [22]
    YANG H, HE M, WU C. Cross protection of lactic acid bacteria during environmental stresses: Stress responses and underlying mechanisms[J]. LWT-Food Science and Technology,2021,144:111203. doi: 10.1016/j.lwt.2021.111203
    [23]
    SUN H, HUA X, ZHANG M, et al. Whey protein concentrate, pullulan, and trehalose as thermal protective agents for increasing viability of Lactobacillus plantarum starter by spray drying[J]. Food Science of Animal Resources,2020,40(1):118−131. doi: 10.5851/kosfa.2019.e94
  • Related Articles

    [1]XUE Jiaqi, WANG Ying, ZHOU Hui, HUANG Junyi, XU Baocai. Research Progress of Packaging Technology in the Preservation of Meat Products[J]. Science and Technology of Food Industry, 2021, 42(16): 367-373. DOI: 10.13386/j.issn1002-0306.2020080047
    [2]CAI Yan-ping, ZHANG Sha-sha, LIU Jian-hua, DING Yu-ting, LIU Shu-lai. Preservation Effects of CO2-cold Seawater Combined with Antioxidants on Litopenaeus vannamei[J]. Science and Technology of Food Industry, 2019, 40(15): 271-275,297. DOI: 10.13386/j.issn1002-0306.2019.15.045
    [3]YI Shu-min, ZHANG Shi-wen, YE Bei-bei, YANG Ling, LI Xue-peng, YU Xiao-jun, DING Hao-chen, HUANG Jian-lian, XIE Jing, LI Jian-rong. Effect of Composite Biological Preservative on the Quality of Nemipterus virgatus Sausages[J]. Science and Technology of Food Industry, 2019, 40(4): 226-231. DOI: 10.13386/j.issn1002-0306.2019.04.037
    [4]ZHAO Hai-yang, GAO Li-qiong, CUI Wen-li, WANG Zhi-neng, ZHENG Quan-hui, WU Guang-xu. Quality Changes of Monopterus albus Slices during Refrigerated Preservation[J]. Science and Technology of Food Industry, 2018, 39(21): 293-298. DOI: 10.13386/j.issn1002-0306.2018.21.052
    [5]SU Hong, SHEN Liang, BI Shi-jie, ZHANG Xiao-mei, GUO Rui, LIU Hong-ying. Preservation Effect of Complex Biological Preservatives on Takifugu rubripes during Cold Storage[J]. Science and Technology of Food Industry, 2018, 39(15): 298-301,321. DOI: 10.13386/j.issn1002-0306.2018.15.052
    [6]ZHANG Li, ZHANG Juan, WANG Qian, MA Ling-yan, DING Wu. Application of eugenol nanoparticles on preservation of chilled pork[J]. Science and Technology of Food Industry, 2017, (22): 280-285. DOI: 10.13386/j.issn1002-0306.2017.22.054
    [7]LAN Rong, WU Zhi-ming, ZHANG Li-qiu. Effect of glucose oxidase on the preservation of raspberries[J]. Science and Technology of Food Industry, 2014, (22): 308-312. DOI: 10.13386/j.issn1002-0306.2014.22.059
    [8]LU Yu-xi, SHEN Ping, LI Xue-ying, YANG Xian-shi, CHI Hai. Influence of preservative on squid quality changes during frozen[J]. Science and Technology of Food Industry, 2014, (19): 274-279. DOI: 10.13386/j.issn1002-0306.2014.19.050
    [9]LIU Xiao, XIE Jing. Effect of biopreservation combined with modified atmosphere packaging on qualities of chilled pork[J]. Science and Technology of Food Industry, 2014, (12): 344-348. DOI: 10.13386/j.issn1002-0306.2014.12.067
    [10]YU Gang, ZHANG Hong-jie, YANG Shao-ling, CEN Jian-wei, HAO Shu-xian, YANG Xian-qing. Research progress in preservation methods for tuna and its quality changes during storage[J]. Science and Technology of Food Industry, 2013, (21): 381-384. DOI: 10.13386/j.issn1002-0306.2013.21.035
  • Cited by

    Periodical cited type(20)

    1. 蒋云聪,张玉涵,魏占姣,齐立军,武亚明. 分子蒸馏精制胡椒精油工艺优化及其成分分析. 中国食品添加剂. 2024(01): 266-271 .
    2. 周宇,提靖靓,袁梦,翟成凯,章海风,李春梅,王芸. 三个地区马铃薯烘烤后食用品质评价分析. 美食研究. 2024(01): 86-94 .
    3. 张琳,胡娅洁,康海龙,李慧,刘庆爽,喻东威,于敏,逯刚. 基于超快速电子鼻对生乳快速鉴别及应用. 中国食品添加剂. 2024(08): 208-216 .
    4. 崔春,梁佳欣,袁梦,高明奇,陈芝飞,张弛,杨雯静,邢雨晴,黄家乐,许春平. 不同干燥方式对甘薯固体香料挥发性/半挥发性成分和表面结构的影响. 食品工业科技. 2023(10): 27-35 . 本站查看
    5. 杨红玉,张颖,吴梦茜,朱慧,李洪梅,黄璐琦,田慧,袁媛. 米蒸地黄辅料米的优选及其抗骨质疏松作用研究. 中国中药杂志. 2023(10): 2749-2756 .
    6. 庄志雄,张雁,邓媛元,唐小俊,刘光,李萍,李雁. 烫漂及喷雾干燥对甜玉米挥发性风味化合物的影响. 食品科学. 2023(14): 274-282 .
    7. 韩艳秋,叶春苗,李莉峰. 乳酸菌发酵对薯干质构和风味的影响. 食品研究与开发. 2023(15): 50-54 .
    8. 尤俊昊,张保,荀航,姚曦,王进,汤锋. 毛竹竹秆加压热水提取工艺优化及化学成分分析. 林产化学与工业. 2023(04): 107-114 .
    9. 肖庆泉. 栽培密度与钾肥施用量对普薯32农艺性状和产量的影响. 福建农业科技. 2023(07): 67-72 .
    10. 肖庆泉. 秋季不同移栽期对鲜食甘薯经济性状和品质的影响. 安徽农学通报. 2023(20): 21-24 .
    11. 赵俊梅,王学清,韩美坤,胡亚亚,高志远,焦伟静,刘兰服,辛国胜,杨雪,马志民,牟德华. 不同类型甘薯最佳烹饪方式评价. 中国粮油学报. 2022(08): 102-110 .
    12. 张玉涵,蒋云聪,魏占姣,张晶晶,齐立军. 基于超快速气相电子鼻构建不同品种花椒和花椒提取物指纹图谱库及应用研究. 中国食品添加剂. 2022(09): 226-233 .
    13. 洪蕴恒,宋聚红,梁丽鹏,付雅丽,王海山. 影响甘薯食用品质因素分析. 蔬菜. 2022(11): 40-43 .
    14. 沈升法,项超,吴列洪,季志仙. 迷你甘薯‘心香’的品质研究和育种利用进展. 分子植物育种. 2022(21): 7249-7258 .
    15. 赵思颖,李璐,刘小茜,赵钢军,吴海滨,罗剑宁,龚浩,郑晓明,李俊星. 基于感官品质、质构特征及理化成分分析的中国南瓜果实感官综合评价预测模型. 食品科学. 2022(23): 63-71 .
    16. 陈龙,史春余,孟迪,许燕,柳洪鹃. 硫酸钾对甘薯块根烤后口感品质的影响. 中国粮油学报. 2021(07): 40-46 .
    17. 张玉涵,李腾飞,魏占姣,齐立军,高伟. 基于超快速气相电子鼻构建不同产地胡椒及胡椒提取物指纹图谱库及应用研究. 中国食品添加剂. 2021(09): 97-104 .
    18. 赵俊梅,高小宽,胡亚亚,韩美坤,马志民,牟德华. 不同品种鲜食型甘薯烘烤后品质的研究. 食品研究与开发. 2021(20): 1-7 .
    19. 项伟,许健,董芳,张道微,黄艳岚,张亚,张超凡. 基于模糊数学的甘薯食用品质感官评价模型. 植物遗传资源学报. 2021(06): 1624-1634 .
    20. 贾赵东,马佩勇,边小峰,禹阳,张铅,刘帅,谢一芝. 鲜食甘薯食用品质感官评价技术规程. 江苏农业科学. 2021(23): 185-189 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (216) PDF downloads (30) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return