Citation: | TIAN Huaixiang, YANG Rui, RONG Shaofeng, et al. Preparation and Biological Regulation of Lactones by Microbial Transformation: A Review[J]. Science and Technology of Food Industry, 2022, 43(13): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090325. |
[1] |
ROBINSON S L, CHRISTENSON J K, WACKETT L P. Biosynthesis and chemical diversity of β-lactone natural products[J]. Natural Product Reports,2019,36(3):458−475. doi: 10.1039/C8NP00052B
|
[2] |
许春平, 孟丹丹, 冉盼盼, 等. 产香酵母发酵处理烟草花蕾条件优化及烟用香料制备研究[J]. 湖北农业科学,2018,57(1):100−103,111. [XU C P, MENG D D, RAN P P, et al. Optimization of fermentation treatment condition of tobacco bud and preparation of tobacco flavor[J]. Hubei Agricultural Sciences,2018,57(1):100−103,111.
XU C P, MENG D D, RAN P P, et al. Optimization of fermentation treatment condition of tobacco bud and preparation of tobacco flavor[J]. Hubei Agricultural Sciences, 2018, 57(1): 100-103, 111.
|
[3] |
孙嘉卿, 冯涛, 宋诗清, 等. 乳品香精的研究进展[J]. 乳业科学与技术,2020,43(3):50−54. [SUN J Q, FENG T, SONG S Q, et al. Progress in research on dairy flavors[J]. Journal of Dairy Science and Technology,2020,43(3):50−54.
SUN J Q, FENG T, SONG S Q, et al. Progress in research on dairy flavors[J]. Journal of Dairy Science and Technology, 2020, 43(3): 50-54.
|
[4] |
黄国程. 内酯类香料的醇解反应及其产物质谱裂解规律探讨[J]. 香料香精化妆品,2019(4):10−14. [HUANG G C. Preliminary study on the alcoholysis of lactones and the pyrolysis regularity of their products’ mass spectrum[J]. Flavor Fragrance Cosmetics,2019(4):10−14. doi: 10.3969/j.issn.1000-4475.2019.04.003
HUANG G C. Preliminary study on the alcoholysis of lactones and the pyrolysis regularity of their products’ mass spectrum[J]. Flavor Fragrance Cosmetics, 2019(4): 10-14. doi: 10.3969/j.issn.1000-4475.2019.04.003
|
[5] |
陈臣, 刘政, 于海燕, 等. 奶酪中内酯类物质风味贡献及其生物合成调控进展[J]. 现代食品科技,2020,36(11):305−312. [CHEN C, LIU Z, YU H Y, et al. Flavor contribution of lactones in cheese and its biosynthetic regulation: A review[J]. Modern Food Science and Technology,2020,36(11):305−312.
CHEN C, LIU Z, YU H Y, et al. Flavor contribution of lactones in cheese and its biosynthetic regulation: A review[J]. Modern Food Science and Technology, 2020, 36(11): 305-312.
|
[6] |
MARELLA E R, DAHLIN J, DAM M I, et al. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids[J]. Metabolic Engineering,2020,61(9):427−436.
|
[7] |
ANDRADE P D, CARVALHO B F, SCHWAN R F, et al. Production of γ-decalactone by yeast strains under different conditions[J]. Food Technol Biotechnol,2017,55(2):225−230.
|
[8] |
王梦泽. 酵母MF-Y11转化蓖麻油酸制备γ-癸内酯的工艺研究[D]. 上海: 上海应用技术大学, 2018: 2−6
WANG M Z. Preparation of γ-decalactone from ricinoleic acid by yeast MF-Y11[D]. Shanghai: Shanghai Institute of Technology, 2018: 2−6.
|
[9] |
王荣霞, 朱廷恒, 汪琨. 添加餐厨废油脂培养酵母进行γ-癸内酯生物转化[J]. 食品与发酵工业,2019,45(20):106−111. [WANG R X, ZHU T H, WANG K. Biotransformation of γ-decalactone from kitchen waste oil by yeasts[J]. Food And Fermentation Industries,2019,45(20):106−111.
WANG R X, ZHU T H, WANG K. Biotransformation of γ-decalactone from kitchen waste oil by yeasts[J]. Food And Fermentation Industries, 2019, 45(20): 106-111.
|
[10] |
PENG B, YU M, ZHANG B, et al. Differences in PpAAT1 activity in high-and low-aroma peach varieties affect γ-decalactone production[J]. Plant Physiology,2020,182(4):2065−2080. doi: 10.1104/pp.19.00964
|
[11] |
OKUI S, UCHIYAMA M, MIZUGAKI M. Metabolism of hydroxy fatty acids. II. Intermediates of the oxidative breakdown of ricinoleic acid by genus candida[J]. Journal of Biochemistry,1963,54(11):536−540.
|
[12] |
LIU H, SONG Y, FAN X, et al. Yarrowia lipolytica as an oleaginous platform for the production of value-added fatty acid-based bioproducts[J]. Frontiers in Microbiology,2021,11(1):3249−3262.
|
[13] |
SANG M L, LIM H J, CHANG J W, et al. Investigation on the formations of volatile compounds, fatty acids, and γ-lactones in white and brown rice during fermentation[J]. Food Chemistry,2018,269(15):347−354.
|
[14] |
胡泰文, 薛永常. 酰基辅酶A硫酯酶在脂肪酸代谢途径中的作用[J]. 生命的化学,2020,40(5):663−667. [HU T W, XUE Y C. The role progress of acyl-CoA thioesterase in fatty acid metabolism pathway[J]. Chemistry of Life,2020,40(5):663−667.
HU T W, XUE Y C. The role progress of acyl-CoA thioesterase in fatty acid metabolism pathway[J]. Chemistry of Life, 2020, 40(5): 663-667.
|
[15] |
WACHÉ Y, AGUEDO M, CHOQUET A, et al. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica[J]. Applied and Environmental Microbiology,2001,67(12):5700−5704. doi: 10.1128/AEM.67.12.5700-5704.2001
|
[16] |
刘沛通, 郑晓卫, 段长青, 等. 不饱和脂肪酸对酿酒酵母生长及产香特性影响的研究进展[J]. 食品科学,2020,41(15):314−322. [LIU P T, ZHEGN X W, DUAN C Q, et al. A review of the effect of unsaturated fatty acids on the cell growth and aroma production of saccharomyces cerevisiae during fermentation[J]. Food Science,2020,41(15):314−322. doi: 10.7506/spkx1002-6630-20190729-397
LIU P T, ZHEGN X W, DUAN C Q, et al. A review of the effect of unsaturated fatty acids on the cell growth and aroma production of saccharomyces cerevisiae during fermentation[J]. Food Science, 2020, 41(15): 314-322. doi: 10.7506/spkx1002-6630-20190729-397
|
[17] |
LLAMAS M, MAGDALENA J A, GONZÁLEZ F C, et al. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation[J]. Biotechnology and Bioengineering,2020,117(1):18−23.
|
[18] |
JU J H, OH B R, HEO S Y, et al. Production of adipic acid by short-and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis[J]. Bioprocess and Biosystems Engineering,2020,43(1):33−43. doi: 10.1007/s00449-019-02202-w
|
[19] |
JALLET D, XING D, HUGHES A, et al. Mitochondrial fatty acid β-oxidation is required for storage lipid catabolism in a marine diatom[J]. New Phytologist,2020,14(3):946−958.
|
[20] |
HANKO E, DEN C M, VIOLETA S, et al. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production[J]. Metabolic Engineering,2018,48(7):52−62.
|
[21] |
GÉSSYCA P, SOARES A, SOUZA K S T, et al. γ-Decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol[J]. Preparative Biochemistry and Biotechnology,2017,47(6):633−637. doi: 10.1080/10826068.2017.1286601
|
[22] |
ELAIDE A, BRAGA, CARLOS, et al. Generation of flavors and fragrances through biotransformation and de novo synthesis[J]. Food and Bioprocess Technology,2018,19(9):2217−2228.
|
[23] |
BORATYŃSKI F, SZCZEPAŃSKA E, SIMEIS D D, et al. Bacterial biotransformation of oleic acid: New findings on the formation of γ-dodecalactone and 10-ketostearic acid in the culture of Micrococcus luteus[J]. Molecules,2020,25(13):3024. doi: 10.3390/molecules25133024
|
[24] |
YVES W, AGUEDO M, MARIE T L, et al. Optimization of Yarrowia lipolytica's β-oxidation pathway for γ-decalactone production[J]. Journal of Molecular Catalysis B Enzymatic,2002,19-20(11):347−351.
|
[25] |
ZHANG L, LI H, GAO L, et al. Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit[J]. Plant Cell Reports,2017,36(6):829−842. doi: 10.1007/s00299-017-2113-4
|
[26] |
LOPES M, GOMES N, MOTA M, et al. Yarrowia lipolytica growth under increased air pressure: Influence on enzyme production[J]. Applied Biochemistry and Biotechnology,2009,159(1):46−53. doi: 10.1007/s12010-008-8359-0
|
[27] |
GOMES N, TEIXEIRA J A, BELO I. The use of methyl ricinoleate in lactone production by Yarrowia lipolytica: Aspects of bioprocess operation that influence the overall performance[J]. Biocatalysis,2010,28(4):227−234. doi: 10.3109/10242422.2010.493208
|
[28] |
于伟, 徐岩, 喻晓蔚, 等. 生物法转化分离耦合制备γ-癸内酯[J]. 化工进展,2007(8):1151−1154. [YU W, XU Y, YU X W, et al. Simultaneous conversion and separation of γ-decalactone prepared by biological pathway[J]. Chemical Industry and Engineering Progress,2007(8):1151−1154. doi: 10.3321/j.issn:1000-6613.2007.08.019
YU W, XU Y, YU X W, et al. Simultaneous conversion and separation of γ-decalactone prepared by biological pathway[J]. Chemical Industry and Engineering Progress, 2007(8): 1151-1154. doi: 10.3321/j.issn:1000-6613.2007.08.019
|
[29] |
徐勤. 微生物转化法制备γ-癸内酯的研究[D]. 天津: 天津科技大学, 2010: 28−50.
XU Q. Preparation of γ-decalactone by microbial transformation[D]. Tianjin: Tianjin University of Science and Technology, 2010: 28−50.
|
[30] |
KAVEK M, BHUTADA G, MADL T, et al. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica[J]. BMC Systems Biology,2015,9(1):72. doi: 10.1186/s12918-015-0217-4
|
[31] |
GROGUENIN A, WACHE´ Y, GARCI Á EE, et al. Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds[J]. Journal of Molecular Catalysis B: Enzymatic,2004,28(2):75−79.
|
[32] |
CHANG J, RICHARD A R. Pex20p functions as the receptor for non-PTS1/non-PTS2 acyl-CoA oxidase import into peroxisomes of the yeast Yarrowia lipolytica[J]. Traffic,2019,20(7):504−515. doi: 10.1111/tra.12652
|
[33] |
刘文山, 刘立辉, 傅荣昭. 食品用酶毕赤酵母表达载体的构建[J]. 生物技术通讯,2018,29(2):262−265. [LIU W S, LIU L H, FU R Z. Construction of a plasmid for producing enzymes as food additives in Pichia pastoris[J]. Letters In Biotechnology,2018,29(2):262−265. doi: 10.3969/j.issn.1009-0002.2018.02.021
LIU W S, LIU L H, FU R Z. Construction of a plasmid for producing enzymes as food additives in Pichia pastoris[J]. Letters In Biotechnology, 2018, 29(2): 262-265. doi: 10.3969/j.issn.1009-0002.2018.02.021
|
[34] |
冯春利, 任清, 张蕾蕾, 等. 解脂耶氏酵母URA3基因的敲除[J]. 食品与生物技术学报,2010,29(4):624−628. [FENG C L, REN Q, ZHANG L L, et al. The disruption of URA3 gene of Yarrowia lipolytica[J]. Journal of Food Science and Biotechnology,2010,29(4):624−628.
FENG C L, REN Q, ZHANG L L, et al. The disruption of URA3 gene of Yarrowia lipolytica[J]. Journal of Food Science and Biotechnology, 2010, 29(4): 624-628.
|
[35] |
冯春利. 高产γ-癸内酯酵母基因工程菌的构建[D]. 北京: 北京工商大学, 2010: 46−76.
FENG C L. Construction of high yield γ-decalactone yeast genetically engineered bacteria[D]. Beijing: Beijing Technology and Business University, 2010: 46−76.
|
[36] |
GUO Y, SONG H, WANG Z, et al. Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production[J]. Microbiological Research,2012,167(4):246−252. doi: 10.1016/j.micres.2011.10.003
|
[37] |
BRAGA A, MESQUITA D P, AMARAL A L, et al. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: Differences in yeast metabolism and morphology[J]. Biochemical Engineering Journal,2015,93(15):55−62.
|
[38] |
SONG Z Z, PENG B, GU Z X. et al. Site-directed mutagenesis identified the key active site residues of alcohol acyltransferase PpAAT1 responsible for aroma biosynthesis in peach fruits[J]. Horticulture Research,2021,1(8):32−32.
|
[39] |
苏畅, 任大明, 杜毅, 等. 微生物发酵法生产γ-癸内酯[J]. 食品工业科技,2004(10):118−119,142. [SU C, RENG D M, DU Y, et al. Production of γ-decalactone by microbial fermentation[J]. Science and Technology of Food Industry,2004(10):118−119,142. doi: 10.3969/j.issn.1002-0306.2004.10.043
SU C, RENG D M, DU Y, et al. Production of γ-decalactone by microbial fermentation[J]. Science and Technology of Food Industry, 2004(10): 118-119, 142. doi: 10.3969/j.issn.1002-0306.2004.10.043
|
[40] |
苏畅, 陈洪, 潘仙华. 复合诱变选育γ-癸内酯高产菌的研究[J]. 食品科技,2010,35(10):20−23. [SU C, CHEN H, PAN X H. Study of a strain with high yielding of γ-decalactone mutated by combinated mutagenesis[J]. Food Science and Technology,2010,35(10):20−23.
SU C, CHEN H, PAN X H. Study of a strain with high yielding of γ-decalactone mutated by combinated mutagenesis[J]. Food Science and Technology, 2010, 35(10): 20-23.
|
[41] |
RONG S, WANG M, YANG S, et al. Improvement in lactone production from biotransformation of ricinoleic acid based on the porous starch delivery system[J]. Journal of Chemical Technology and Biotechnology,2017,20(10):1198−1205.
|
[42] |
AGUEDO M, GOMES N, GARCIA E E, et al. Decalactone production by Yarrowia lipolytica under increased O2 transfer rates[J]. Biotechnology Letters,2005,27(20):1617−1621. doi: 10.1007/s10529-005-2517-z
|
[43] |
BRAGA A, BELO I. Production of γ-decalactone by Yarrowia lipolytica: Insights into experimental conditions and operating mode optimization[J]. Journal of Chemical Technology and Biotechnology,2015,90(3):559−565. doi: 10.1002/jctb.4349
|
[44] |
ESCAMILLA G E, RIORDAN S O’, GOMES N, et al. An air-lift biofilm reactor for the production of γ-decalactones by Yarrowia lipolytica[J]. Process Biochemistry,2014,49(9):1377−1382. doi: 10.1016/j.procbio.2014.05.011
|
[45] |
GOMES N, AGUEDO M, TEIXEIRA J, et al. Oxygen mass transfer in a biphasic medium: Influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica[J]. Biochemical Engineering Journal,2007,35(3):380−386. doi: 10.1016/j.bej.2007.02.002
|
[46] |
TRY S, JOËLLE DE-CONINCK, VOILLEY A, et al. Solid state fermentation for the production of γ-decalactones by Yarrowia lipolytica[J]. Process Biochemistry,2018,64(1):9−15.
|
[47] |
REIS N, GONCALVES C N, AGUEDO M, et al. Application of a novel oscillatory flow micro-bioreactor to the production of γ-decalactone in a two immiscible liquid phase medium[J]. Biotechnology Letters,2006,28(7):485−490. doi: 10.1007/s10529-006-0003-x
|
[48] |
MAAJOWICZ J, NOWAK D, FABISZEWSKA A, et al. Comparison of gamma-decalactone biosynthesis by yeast Yarrowia lipolytica MTLY40-2p and W29 in batch-cultures[J]. Biotechnology and Biotechnological Equipment,2020,34(1):330−340. doi: 10.1080/13102818.2020.1749528
|
[49] |
MORADI H, ASADOLLAHI M A, NAHVI I. Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica[J]. Biocatalysis and Agricultural Biotechnology,2013,2(1):64−68. doi: 10.1016/j.bcab.2012.11.001
|
[50] |
闫淑芳, 华栋梁, 林山, 等. 微生物法生产γ-癸内酯的初步研究[J]. 生物加工过程,2005(3):74−77. [YAN S F, HUA D L, LIN S, et al. Initial study on γ-decalactone production by microbial bioconversion[J]. Chinese Journal of Bioprocess Engineering,2005(3):74−77. doi: 10.3969/j.issn.1672-3678.2005.03.015
YAN S F, HUA D L, LIN S, et al. Initial study on γ-decalactone production by microbial bioconversion[J]. Chinese Journal of Bioprocess Engineering, 2005(3): 74-77. doi: 10.3969/j.issn.1672-3678.2005.03.015
|
[51] |
RONG S, YANG S, LI Q, et al. Improvement of γ-decalactone production by stimulating the import of ricinoleic acid and suppressing the degradation of γ-decalactone in Saccharomyces cerevisiae[J]. Biocatalysis and Biotransformation,2017,35(2):96−102. doi: 10.1080/10242422.2017.1289182
|
[52] |
ALCHIHAB M, ALDRIC J M, AGUEDO M, et al. The use of Macronet resins to recover γ-decalactone produced by Rhodotorula aurantiaca from the culture broth[J]. Journal of Industrial Microbiology and Biotechnology,2010,37(2):167−172. doi: 10.1007/s10295-009-0659-z
|
[53] |
ZHAO Y, XU Y, JIANG C. Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite[J]. Bioprocess and Biosystems Engineering,2015,38(10):2045−2052. doi: 10.1007/s00449-015-1431-6
|
[54] |
赵玉萍, 徐岩, 王栋. 固定化耶氏酵母提高产γ-癸内酯能力[J]. 食品工业科技,2012,33(4):230−233. [ZHAO Y P, XU Y, WANG D. Production capacity of γ-decalactone increased by using immobilized Yarrowia sp
J]. Science and Technology of Food Industry,2012,33(4):230−233.
|
[55] |
ZHAO C, GU D, NAMBOU K, et al. Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources[J]. Journal of Biotechnology,2015,206(20):42−51.
|
[56] |
NAMA S, REDDY L V, REDDY B V, et al. Improved production of γ-decalactone from castor oil by UV mutated yeast Sporidiobolus salmonicolor (MTCC 485)[J]. Bioscience Methods,2016(7):6.
|
[57] |
GOMES N, TEIXEIRA, JOSÉ A, et al. Empirical modelling as an experimental approach to optimize lactone production[J]. Catalysis Science & Technology,2011,1(1):86−92.
|