TIAN Huaixiang, YANG Rui, RONG Shaofeng, et al. Preparation and Biological Regulation of Lactones by Microbial Transformation: A Review[J]. Science and Technology of Food Industry, 2022, 43(13): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090325.
Citation: TIAN Huaixiang, YANG Rui, RONG Shaofeng, et al. Preparation and Biological Regulation of Lactones by Microbial Transformation: A Review[J]. Science and Technology of Food Industry, 2022, 43(13): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090325.

Preparation and Biological Regulation of Lactones by Microbial Transformation: A Review

More Information
  • Received Date: September 27, 2021
  • Available Online: April 23, 2022
  • Lactones are widely used in confectionery, beverages, dairy products, baking and other foods due to their typical creamy, floral and fruity aromas. In recent years, because consumers prefer the natural properties of products, the preparation and biological regulation of lactones by microbial transformation has attracted much attention. The microbial transformation mechanisms of γ- and δ-lactones are reviewed in this paper, including the way of fatty acids entering mitochondria, β-oxidation, cyclization and degradation metabolic pathways. The existing regulation methods of microbial transformation are also summarized, such as gene regulation based on genomics, dissolved oxygen, substrate batch culture, cell immobilization and strain mutagenesis. The research direction of regulation of lactones is prospected, which can provide reference for more economical and efficient microbial transformation of lactones.
  • [1]
    ROBINSON S L, CHRISTENSON J K, WACKETT L P. Biosynthesis and chemical diversity of β-lactone natural products[J]. Natural Product Reports,2019,36(3):458−475. doi: 10.1039/C8NP00052B
    [2]
    许春平, 孟丹丹, 冉盼盼, 等. 产香酵母发酵处理烟草花蕾条件优化及烟用香料制备研究[J]. 湖北农业科学,2018,57(1):100−103,111. [XU C P, MENG D D, RAN P P, et al. Optimization of fermentation treatment condition of tobacco bud and preparation of tobacco flavor[J]. Hubei Agricultural Sciences,2018,57(1):100−103,111.

    XU C P, MENG D D, RAN P P, et al. Optimization of fermentation treatment condition of tobacco bud and preparation of tobacco flavor[J]. Hubei Agricultural Sciences, 2018, 57(1): 100-103, 111.
    [3]
    孙嘉卿, 冯涛, 宋诗清, 等. 乳品香精的研究进展[J]. 乳业科学与技术,2020,43(3):50−54. [SUN J Q, FENG T, SONG S Q, et al. Progress in research on dairy flavors[J]. Journal of Dairy Science and Technology,2020,43(3):50−54.

    SUN J Q, FENG T, SONG S Q, et al. Progress in research on dairy flavors[J]. Journal of Dairy Science and Technology, 2020, 43(3): 50-54.
    [4]
    黄国程. 内酯类香料的醇解反应及其产物质谱裂解规律探讨[J]. 香料香精化妆品,2019(4):10−14. [HUANG G C. Preliminary study on the alcoholysis of lactones and the pyrolysis regularity of their products’ mass spectrum[J]. Flavor Fragrance Cosmetics,2019(4):10−14. doi: 10.3969/j.issn.1000-4475.2019.04.003

    HUANG G C. Preliminary study on the alcoholysis of lactones and the pyrolysis regularity of their products’ mass spectrum[J]. Flavor Fragrance Cosmetics, 2019(4): 10-14. doi: 10.3969/j.issn.1000-4475.2019.04.003
    [5]
    陈臣, 刘政, 于海燕, 等. 奶酪中内酯类物质风味贡献及其生物合成调控进展[J]. 现代食品科技,2020,36(11):305−312. [CHEN C, LIU Z, YU H Y, et al. Flavor contribution of lactones in cheese and its biosynthetic regulation: A review[J]. Modern Food Science and Technology,2020,36(11):305−312.

    CHEN C, LIU Z, YU H Y, et al. Flavor contribution of lactones in cheese and its biosynthetic regulation: A review[J]. Modern Food Science and Technology, 2020, 36(11): 305-312.
    [6]
    MARELLA E R, DAHLIN J, DAM M I, et al. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids[J]. Metabolic Engineering,2020,61(9):427−436.
    [7]
    ANDRADE P D, CARVALHO B F, SCHWAN R F, et al. Production of γ-decalactone by yeast strains under different conditions[J]. Food Technol Biotechnol,2017,55(2):225−230.
    [8]
    王梦泽. 酵母MF-Y11转化蓖麻油酸制备γ-癸内酯的工艺研究[D]. 上海: 上海应用技术大学, 2018: 2−6

    WANG M Z. Preparation of γ-decalactone from ricinoleic acid by yeast MF-Y11[D]. Shanghai: Shanghai Institute of Technology, 2018: 2−6.
    [9]
    王荣霞, 朱廷恒, 汪琨. 添加餐厨废油脂培养酵母进行γ-癸内酯生物转化[J]. 食品与发酵工业,2019,45(20):106−111. [WANG R X, ZHU T H, WANG K. Biotransformation of γ-decalactone from kitchen waste oil by yeasts[J]. Food And Fermentation Industries,2019,45(20):106−111.

    WANG R X, ZHU T H, WANG K. Biotransformation of γ-decalactone from kitchen waste oil by yeasts[J]. Food And Fermentation Industries, 2019, 45(20): 106-111.
    [10]
    PENG B, YU M, ZHANG B, et al. Differences in PpAAT1 activity in high-and low-aroma peach varieties affect γ-decalactone production[J]. Plant Physiology,2020,182(4):2065−2080. doi: 10.1104/pp.19.00964
    [11]
    OKUI S, UCHIYAMA M, MIZUGAKI M. Metabolism of hydroxy fatty acids. II. Intermediates of the oxidative breakdown of ricinoleic acid by genus candida[J]. Journal of Biochemistry,1963,54(11):536−540.
    [12]
    LIU H, SONG Y, FAN X, et al. Yarrowia lipolytica as an oleaginous platform for the production of value-added fatty acid-based bioproducts[J]. Frontiers in Microbiology,2021,11(1):3249−3262.
    [13]
    SANG M L, LIM H J, CHANG J W, et al. Investigation on the formations of volatile compounds, fatty acids, and γ-lactones in white and brown rice during fermentation[J]. Food Chemistry,2018,269(15):347−354.
    [14]
    胡泰文, 薛永常. 酰基辅酶A硫酯酶在脂肪酸代谢途径中的作用[J]. 生命的化学,2020,40(5):663−667. [HU T W, XUE Y C. The role progress of acyl-CoA thioesterase in fatty acid metabolism pathway[J]. Chemistry of Life,2020,40(5):663−667.

    HU T W, XUE Y C. The role progress of acyl-CoA thioesterase in fatty acid metabolism pathway[J]. Chemistry of Life, 2020, 40(5): 663-667.
    [15]
    WACHÉ Y, AGUEDO M, CHOQUET A, et al. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica[J]. Applied and Environmental Microbiology,2001,67(12):5700−5704. doi: 10.1128/AEM.67.12.5700-5704.2001
    [16]
    刘沛通, 郑晓卫, 段长青, 等. 不饱和脂肪酸对酿酒酵母生长及产香特性影响的研究进展[J]. 食品科学,2020,41(15):314−322. [LIU P T, ZHEGN X W, DUAN C Q, et al. A review of the effect of unsaturated fatty acids on the cell growth and aroma production of saccharomyces cerevisiae during fermentation[J]. Food Science,2020,41(15):314−322. doi: 10.7506/spkx1002-6630-20190729-397

    LIU P T, ZHEGN X W, DUAN C Q, et al. A review of the effect of unsaturated fatty acids on the cell growth and aroma production of saccharomyces cerevisiae during fermentation[J]. Food Science, 2020, 41(15): 314-322. doi: 10.7506/spkx1002-6630-20190729-397
    [17]
    LLAMAS M, MAGDALENA J A, GONZÁLEZ F C, et al. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation[J]. Biotechnology and Bioengineering,2020,117(1):18−23.
    [18]
    JU J H, OH B R, HEO S Y, et al. Production of adipic acid by short-and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis[J]. Bioprocess and Biosystems Engineering,2020,43(1):33−43. doi: 10.1007/s00449-019-02202-w
    [19]
    JALLET D, XING D, HUGHES A, et al. Mitochondrial fatty acid β-oxidation is required for storage lipid catabolism in a marine diatom[J]. New Phytologist,2020,14(3):946−958.
    [20]
    HANKO E, DEN C M, VIOLETA S, et al. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production[J]. Metabolic Engineering,2018,48(7):52−62.
    [21]
    GÉSSYCA P, SOARES A, SOUZA K S T, et al. γ-Decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol[J]. Preparative Biochemistry and Biotechnology,2017,47(6):633−637. doi: 10.1080/10826068.2017.1286601
    [22]
    ELAIDE A, BRAGA, CARLOS, et al. Generation of flavors and fragrances through biotransformation and de novo synthesis[J]. Food and Bioprocess Technology,2018,19(9):2217−2228.
    [23]
    BORATYŃSKI F, SZCZEPAŃSKA E, SIMEIS D D, et al. Bacterial biotransformation of oleic acid: New findings on the formation of γ-dodecalactone and 10-ketostearic acid in the culture of Micrococcus luteus[J]. Molecules,2020,25(13):3024. doi: 10.3390/molecules25133024
    [24]
    YVES W, AGUEDO M, MARIE T L, et al. Optimization of Yarrowia lipolytica's β-oxidation pathway for γ-decalactone production[J]. Journal of Molecular Catalysis B Enzymatic,2002,19-20(11):347−351.
    [25]
    ZHANG L, LI H, GAO L, et al. Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit[J]. Plant Cell Reports,2017,36(6):829−842. doi: 10.1007/s00299-017-2113-4
    [26]
    LOPES M, GOMES N, MOTA M, et al. Yarrowia lipolytica growth under increased air pressure: Influence on enzyme production[J]. Applied Biochemistry and Biotechnology,2009,159(1):46−53. doi: 10.1007/s12010-008-8359-0
    [27]
    GOMES N, TEIXEIRA J A, BELO I. The use of methyl ricinoleate in lactone production by Yarrowia lipolytica: Aspects of bioprocess operation that influence the overall performance[J]. Biocatalysis,2010,28(4):227−234. doi: 10.3109/10242422.2010.493208
    [28]
    于伟, 徐岩, 喻晓蔚, 等. 生物法转化分离耦合制备γ-癸内酯[J]. 化工进展,2007(8):1151−1154. [YU W, XU Y, YU X W, et al. Simultaneous conversion and separation of γ-decalactone prepared by biological pathway[J]. Chemical Industry and Engineering Progress,2007(8):1151−1154. doi: 10.3321/j.issn:1000-6613.2007.08.019

    YU W, XU Y, YU X W, et al. Simultaneous conversion and separation of γ-decalactone prepared by biological pathway[J]. Chemical Industry and Engineering Progress, 2007(8): 1151-1154. doi: 10.3321/j.issn:1000-6613.2007.08.019
    [29]
    徐勤. 微生物转化法制备γ-癸内酯的研究[D]. 天津: 天津科技大学, 2010: 28−50.

    XU Q. Preparation of γ-decalactone by microbial transformation[D]. Tianjin: Tianjin University of Science and Technology, 2010: 28−50.
    [30]
    KAVEK M, BHUTADA G, MADL T, et al. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica[J]. BMC Systems Biology,2015,9(1):72. doi: 10.1186/s12918-015-0217-4
    [31]
    GROGUENIN A, WACHE´ Y, GARCI Á EE, et al. Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds[J]. Journal of Molecular Catalysis B: Enzymatic,2004,28(2):75−79.
    [32]
    CHANG J, RICHARD A R. Pex20p functions as the receptor for non-PTS1/non-PTS2 acyl-CoA oxidase import into peroxisomes of the yeast Yarrowia lipolytica[J]. Traffic,2019,20(7):504−515. doi: 10.1111/tra.12652
    [33]
    刘文山, 刘立辉, 傅荣昭. 食品用酶毕赤酵母表达载体的构建[J]. 生物技术通讯,2018,29(2):262−265. [LIU W S, LIU L H, FU R Z. Construction of a plasmid for producing enzymes as food additives in Pichia pastoris[J]. Letters In Biotechnology,2018,29(2):262−265. doi: 10.3969/j.issn.1009-0002.2018.02.021

    LIU W S, LIU L H, FU R Z. Construction of a plasmid for producing enzymes as food additives in Pichia pastoris[J]. Letters In Biotechnology, 2018, 29(2): 262-265. doi: 10.3969/j.issn.1009-0002.2018.02.021
    [34]
    冯春利, 任清, 张蕾蕾, 等. 解脂耶氏酵母URA3基因的敲除[J]. 食品与生物技术学报,2010,29(4):624−628. [FENG C L, REN Q, ZHANG L L, et al. The disruption of URA3 gene of Yarrowia lipolytica[J]. Journal of Food Science and Biotechnology,2010,29(4):624−628.

    FENG C L, REN Q, ZHANG L L, et al. The disruption of URA3 gene of Yarrowia lipolytica[J]. Journal of Food Science and Biotechnology, 2010, 29(4): 624-628.
    [35]
    冯春利. 高产γ-癸内酯酵母基因工程菌的构建[D]. 北京: 北京工商大学, 2010: 46−76.

    FENG C L. Construction of high yield γ-decalactone yeast genetically engineered bacteria[D]. Beijing: Beijing Technology and Business University, 2010: 46−76.
    [36]
    GUO Y, SONG H, WANG Z, et al. Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production[J]. Microbiological Research,2012,167(4):246−252. doi: 10.1016/j.micres.2011.10.003
    [37]
    BRAGA A, MESQUITA D P, AMARAL A L, et al. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: Differences in yeast metabolism and morphology[J]. Biochemical Engineering Journal,2015,93(15):55−62.
    [38]
    SONG Z Z, PENG B, GU Z X. et al. Site-directed mutagenesis identified the key active site residues of alcohol acyltransferase PpAAT1 responsible for aroma biosynthesis in peach fruits[J]. Horticulture Research,2021,1(8):32−32.
    [39]
    苏畅, 任大明, 杜毅, 等. 微生物发酵法生产γ-癸内酯[J]. 食品工业科技,2004(10):118−119,142. [SU C, RENG D M, DU Y, et al. Production of γ-decalactone by microbial fermentation[J]. Science and Technology of Food Industry,2004(10):118−119,142. doi: 10.3969/j.issn.1002-0306.2004.10.043

    SU C, RENG D M, DU Y, et al. Production of γ-decalactone by microbial fermentation[J]. Science and Technology of Food Industry, 2004(10): 118-119, 142. doi: 10.3969/j.issn.1002-0306.2004.10.043
    [40]
    苏畅, 陈洪, 潘仙华. 复合诱变选育γ-癸内酯高产菌的研究[J]. 食品科技,2010,35(10):20−23. [SU C, CHEN H, PAN X H. Study of a strain with high yielding of γ-decalactone mutated by combinated mutagenesis[J]. Food Science and Technology,2010,35(10):20−23.

    SU C, CHEN H, PAN X H. Study of a strain with high yielding of γ-decalactone mutated by combinated mutagenesis[J]. Food Science and Technology, 2010, 35(10): 20-23.
    [41]
    RONG S, WANG M, YANG S, et al. Improvement in lactone production from biotransformation of ricinoleic acid based on the porous starch delivery system[J]. Journal of Chemical Technology and Biotechnology,2017,20(10):1198−1205.
    [42]
    AGUEDO M, GOMES N, GARCIA E E, et al. Decalactone production by Yarrowia lipolytica under increased O2 transfer rates[J]. Biotechnology Letters,2005,27(20):1617−1621. doi: 10.1007/s10529-005-2517-z
    [43]
    BRAGA A, BELO I. Production of γ-decalactone by Yarrowia lipolytica: Insights into experimental conditions and operating mode optimization[J]. Journal of Chemical Technology and Biotechnology,2015,90(3):559−565. doi: 10.1002/jctb.4349
    [44]
    ESCAMILLA G E, RIORDAN S O’, GOMES N, et al. An air-lift biofilm reactor for the production of γ-decalactones by Yarrowia lipolytica[J]. Process Biochemistry,2014,49(9):1377−1382. doi: 10.1016/j.procbio.2014.05.011
    [45]
    GOMES N, AGUEDO M, TEIXEIRA J, et al. Oxygen mass transfer in a biphasic medium: Influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica[J]. Biochemical Engineering Journal,2007,35(3):380−386. doi: 10.1016/j.bej.2007.02.002
    [46]
    TRY S, JOËLLE DE-CONINCK, VOILLEY A, et al. Solid state fermentation for the production of γ-decalactones by Yarrowia lipolytica[J]. Process Biochemistry,2018,64(1):9−15.
    [47]
    REIS N, GONCALVES C N, AGUEDO M, et al. Application of a novel oscillatory flow micro-bioreactor to the production of γ-decalactone in a two immiscible liquid phase medium[J]. Biotechnology Letters,2006,28(7):485−490. doi: 10.1007/s10529-006-0003-x
    [48]
    MAAJOWICZ J, NOWAK D, FABISZEWSKA A, et al. Comparison of gamma-decalactone biosynthesis by yeast Yarrowia lipolytica MTLY40-2p and W29 in batch-cultures[J]. Biotechnology and Biotechnological Equipment,2020,34(1):330−340. doi: 10.1080/13102818.2020.1749528
    [49]
    MORADI H, ASADOLLAHI M A, NAHVI I. Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica[J]. Biocatalysis and Agricultural Biotechnology,2013,2(1):64−68. doi: 10.1016/j.bcab.2012.11.001
    [50]
    闫淑芳, 华栋梁, 林山, 等. 微生物法生产γ-癸内酯的初步研究[J]. 生物加工过程,2005(3):74−77. [YAN S F, HUA D L, LIN S, et al. Initial study on γ-decalactone production by microbial bioconversion[J]. Chinese Journal of Bioprocess Engineering,2005(3):74−77. doi: 10.3969/j.issn.1672-3678.2005.03.015

    YAN S F, HUA D L, LIN S, et al. Initial study on γ-decalactone production by microbial bioconversion[J]. Chinese Journal of Bioprocess Engineering, 2005(3): 74-77. doi: 10.3969/j.issn.1672-3678.2005.03.015
    [51]
    RONG S, YANG S, LI Q, et al. Improvement of γ-decalactone production by stimulating the import of ricinoleic acid and suppressing the degradation of γ-decalactone in Saccharomyces cerevisiae[J]. Biocatalysis and Biotransformation,2017,35(2):96−102. doi: 10.1080/10242422.2017.1289182
    [52]
    ALCHIHAB M, ALDRIC J M, AGUEDO M, et al. The use of Macronet resins to recover γ-decalactone produced by Rhodotorula aurantiaca from the culture broth[J]. Journal of Industrial Microbiology and Biotechnology,2010,37(2):167−172. doi: 10.1007/s10295-009-0659-z
    [53]
    ZHAO Y, XU Y, JIANG C. Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite[J]. Bioprocess and Biosystems Engineering,2015,38(10):2045−2052. doi: 10.1007/s00449-015-1431-6
    [54]
    赵玉萍, 徐岩, 王栋. 固定化耶氏酵母提高产γ-癸内酯能力[J]. 食品工业科技,2012,33(4):230−233. [ZHAO Y P, XU Y, WANG D. Production capacity of γ-decalactone increased by using immobilized Yarrowia sp

    J]. Science and Technology of Food Industry,2012,33(4):230−233.
    [55]
    ZHAO C, GU D, NAMBOU K, et al. Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources[J]. Journal of Biotechnology,2015,206(20):42−51.
    [56]
    NAMA S, REDDY L V, REDDY B V, et al. Improved production of γ-decalactone from castor oil by UV mutated yeast Sporidiobolus salmonicolor (MTCC 485)[J]. Bioscience Methods,2016(7):6.
    [57]
    GOMES N, TEIXEIRA, JOSÉ A, et al. Empirical modelling as an experimental approach to optimize lactone production[J]. Catalysis Science & Technology,2011,1(1):86−92.
  • Cited by

    Periodical cited type(5)

    1. 佘文海,廖威龙,赵永强,董浩. 磷酸盐的持水机理及其在鱼糜加工中的应用. 轻工科技. 2025(01): 51-54 .
    2. 郭兵兵,胡澳,陈梦婷,吴文锦,李玟君,关叶霞,熊光权,石柳,陈胜,郭晓嘉,汪超,汪兰,李玮. 魔芋葡甘聚糖对鱼糜抗冻机理和品质特性的研究进展. 现代食品科技. 2025(01): 331-342 .
    3. 崔悦,刘锞琳,许龙,祝超智,马长明,余小领. 抗冻剂提高肉糜类制品冻融稳定性的研究进展及展望. 河南科技学院学报(自然科学版). 2024(02): 33-40 .
    4. 郭雨晨,赵源,李振坤,石林凡,刘淑集,刘智禹,翁武银. 海水鱼抗冻剂中复合磷酸盐的优化和应用研究. 渔业研究. 2024(05): 458-467 .
    5. 王哲,王晓雯,张新笑,王灵娟,秦晓娟,徐为民,王道营,邹烨. 肉制品食品抗冻剂的作用机制及其应用研究进展. 肉类研究. 2023(11): 50-55 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (383) PDF downloads (54) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return