YANG Hong, LIU Aiguo, LIU Lizeng, et al. Optimization of Formula of Bovine Colostrum Immunoglobulin Thermal Protective Agent by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(12): 108−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090302.
Citation: YANG Hong, LIU Aiguo, LIU Lizeng, et al. Optimization of Formula of Bovine Colostrum Immunoglobulin Thermal Protective Agent by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(12): 108−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090302.

Optimization of Formula of Bovine Colostrum Immunoglobulin Thermal Protective Agent by Response Surface Methodology

More Information
  • Received Date: September 25, 2021
  • Available Online: April 13, 2022
  • In order to screen an optimal thermal protective agent for immunoglobulin G in bovine colostrum, the IgG was extracted from bovine colostrum. Based on single factor experiments, the response value was the retention rate of IgG activity, and the response factors were glycine, maltitol and inulin. Box–Behnken experimental design on three levels and three variables was used for optimization of IgG thermal protectant. The structure of IgG was characterized by Fourier transform infrared Spectroscopy and endogenous fluorescence spectroscopy. The results showed that the best formula of IgG thermal protection agent was: Glycine 0.48%, inulin 14.98%, and maltitol 12.50%. Under these conditions, the IgG activity retention rate at 75 ℃ for 5 min was 36.59%, indicating that the response surface model had high accuracy and the optimized thermal protectant formula had practical application significance. The results of Fourier transform infrared spectrum and endogenous fluorescence spectrum analysis showed that compared with bovine colostrum IgG without compound heat protectant, the β-fold content decreased significantly (P<0.05), the irregular curl content decreased significantly (P<0.05), and the secondary conformation showed a more orderly state. The fluorescence intensity decreased, and IgG molecules piled up more tightly. The results showed that the structural stability of IgG in bovine colostrum was improved after adding compound heat protection agent. This research explored a new type of bovine colostrum IgG heat protectant formula, which would provide a reference for the further development and utilization of f functional foods from bovine colostrums.
  • [1]
    CHAE A, AITCHISON A, DAY A S, et al. Bovine colostrum demonstrates anti-inflammatory and antibacterial activity in in vitro models of intestinal inflammation and infection[J]. Journal of Functional Foods,2017,28:293−298. doi: 10.1016/j.jff.2016.11.016
    [2]
    BAGWE S, THARAPPEL L J, KAUR G, et al. Bovine colostrum: an emerging nutraceutical[J]. Journal of Complementary Medicine,2015,12(3):175−185.
    [3]
    郭善楠, 孙宇超. 牛乳中免疫球蛋白的生物功能及其分离、纯化研究进展概述[J]. 中国乳业,2020(12):58−59. [GUO Shannan, SUN Yuchao. Research progress on the biological function, separation, and purification of immunoglobulin from milk[J]. China Dairy Industry,2020(12):58−59.

    GUO Shannan, SUN Yuchao. Research progress on the biological function, separation, and purification of immunoglobulin from milk[J]. China Dairy Industry, 2020(12): 58-59.
    [4]
    ULFMAN L H, LEUSEN J H W, SAVELKOUL H F J, et al. Effects of bovine immunoglobulins on immune function, allergy, and infection[J]. Frontiers in Nutrition,2018,5:52−72. doi: 10.3389/fnut.2018.00052
    [5]
    ANDERSON R C, DALZIEL J E, HAGGARTY N W, et al. Short communication: Processed bovine colostrum milk protein concentrate increases epithelial barrier integrity of Caco-2 cell layers[J]. Journal of Dairy Science, 2019, 102(12): 10772-10778.
    [6]
    BUTTAR H S, BAGWE S M, BHULLAR S K, et al. Health benefits of bovine colostrum in children and adults[J]. Dairy in Human Health and Disease Across the Lifespan,2017:3−20.
    [7]
    PLAYFORD R J, WEISER M J. Bovine colostrum: Its constituents and uses[J]. Nutrients,2021,13(1):265. doi: 10.3390/nu13010265
    [8]
    BORAD S G, SINGH A K. Colostrum immunoglobulins: Processing, preservation, and application aspects[J]. International Dairy Journal,2018,85:201−210. doi: 10.1016/j.idairyj.2018.05.016
    [9]
    刘伟. 牛初乳免疫球蛋白(IgG)稳定性的研究及改善[D]. 北京: 中国农业大学, 2005.

    LIU Wei. Research and improvement of the stability of bovine colostrum Immunoglobulin G [D]. Beijing: China Agricultural University, 2005.
    [10]
    CHEN C, CHANG H. Effect of thermal protectants on the stability of bovine milk immunoglobulin G[J]. Journal of Agricultural and Food Chemistry,1998,46(9):3570−3576. doi: 10.1021/jf970980f
    [11]
    OOIZUMI T, HASHIMOTO K, OGURA J, et al. Quantitative aspect for protective effect of sugar and sugar alcohol against denaturation of fish myofibrils[J]. Bulletin of the Japanese Society of Scientific Fisheries,1981,47(7):901−908. doi: 10.2331/suisan.47.901
    [12]
    雷昌贵, 孟宇竹, 蔡花真, 等. 食品添加剂对牛初乳免疫球蛋白(IgG)稳定性的影响[J]. 中国食品添加剂,2013(3):137−142. [LEI Changgui, MENG Yuzhu, CAI Huazhen, et al. Effects of food additives on stability of bovine colostrum Immunoglobulin G[J]. China Food Additives,2013(3):137−142. doi: 10.3969/j.issn.1006-2513.2013.03.016

    LEI Changgui, MENG Yuzhu, CAI Huazhen, et al. Effects of food additives on stability of bovine colostrum Immunoglobulin G[J]. China Food Additives, 2013(3): 137-142. doi: 10.3969/j.issn.1006-2513.2013.03.016
    [13]
    徐钦. 牛初乳中免疫球蛋白G的提取和干燥工艺研究[D]. 长沙: 湖南农业大学, 2010.

    XU Qin. Study on extraction and drying process of immunoglobulin G from bovine colostrum[D]. Changsha: Hunan Agricultural University, 2010.
    [14]
    王璐怡. 牛初乳免疫球蛋白IgG微胶囊化研究[D]. 上海: 上海交通大学, 2012.

    WANG Luyi. Study on microencapsulation of bovine colostrum immunoglobulin G[D]. Shanghai: Shanghai Jiao tong University, 2012.
    [15]
    徐思思. 牛初乳粉制备中稳定性保护关键技术研究[D]. 长春: 吉林大学, 2016.

    XU Sisi. Study on key technology of stability protection in preparation of Bovine colostrum powder[D]. Changchun: Jilin University, 2016.
    [16]
    曲金萍, 陈金玉, 张坤生, 等. 响应面法优化鸡胸肉肌原纤维蛋白抗氧化肽的制备及其二级结构研究[J]. 食品研究与开发,2020,41(13):1−8. [QU Jinping, CHEN Jinyu, ZHANG Kunsheng, et al. Research on optimization of preparation and secondary structure of chicken breast myofibrillarprotein antioxidant peptide by response surface methodology[J]. Food Research and Development,2020,41(13):1−8. doi: 10.12161/j.issn.1005-6521.2020.13.001

    QU Jinping, CHEN Jinyu, ZHANG Kunsheng, et al. Research on optimization of preparation and secondary structure of chicken breast myofibrillarprotein antioxidant peptide by response surface methodology[J]. Food Research and Development, 2020, 41(13): 1-8. doi: 10.12161/j.issn.1005-6521.2020.13.001
    [17]
    梁雯雯, 郭建, 汪秋宽, 等. 不同解冻方式对鲢鱼肌球蛋白结构和性质的影响[J]. 食品工业科技,2019,40(21):7−12. [LIANG Wenwen, GUO Jian, WANG Qiukuan, et al. Effects of different thawing methods on the structure and properties of silver carp myosin[J]. Science and Technology of Food Industry,2019,40(21):7−12.

    LIANG Wenwen, GUO Jian, WANG Qiukuan, et al. Effects of different thawing methods on the structure and properties of silver carp myosin[J]. Science and Technology of Food Industry, 2019, 40(21): 7-12.
    [18]
    石燕, 刘凡, 葛辉, 等. 微胶囊形成过程中蛋白质二级结构变化的红外光谱分析[J]. 光谱学与光谱分析,2012,32(7):1815−1819. [SHI Yan, LIU Fan, GE Hui, et al. Study on secondary structural changes of protein in the formation of microcapsule by FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis,2012,32(7):1815−1819. doi: 10.3964/j.issn.1000-0593(2012)07-1815-05

    SHI Yan, LIU Fan, GE Hui, et al. Study on secondary structural changes of protein in the formation of microcapsule by FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1815-1819. doi: 10.3964/j.issn.1000-0593(2012)07-1815-05
    [19]
    TIMASHEFF S N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes?[J]. Annual Review of Biophysics and Biomolecular Structure,1993,22:67−97. doi: 10.1146/annurev.bb.22.060193.000435
    [20]
    CHEN C C, TU Y Y, Chang H M. Thermal stability of bovine milk Immunoglobulin G (IgG) and the effect of added thermal protectants on the stability[J]. Journal of Food Science,2000,65(2):188−193. doi: 10.1111/j.1365-2621.2000.tb15977.x
    [21]
    罗磊, 朱文学, 张绍华. 猪血清IgG干燥方式及干燥保护剂的应用[J]. 农业工程学报, 2009, 25(4): 281-285.

    LUO Lei, ZHU Wenxue, ZHANG Shaohua. Application of different protectants and drying methods for porcine serum Immunoglobulin G, 2009, 25(4): 281-285.
    [22]
    THABUIS C, CAZAUBIEL M, PICHELIN M, et al. Short-term digestive tolerance of chocolate formulated with maltitol in children[J]. International Journal of Food Sciences and Nutrition,2010,61(7):728−738. doi: 10.3109/09637481003766812
    [23]
    FATIMA S D, HASANPASHA N S, ANDANESH B, et al. Application of response surface optimization methodology in designing ordispersible tablets of antdiabetic drug[J]. Journal of Young Pharmacists,2020,12(2):173−177. doi: 10.5530/jyp.2020.12.35
    [24]
    王星敏, 王露, 李鑫, 等. 水热法提取桑叶中异槲皮苷工艺参数优化[J]. 农业工程学报,2019,35(9):308−314. [WANG Xingmin, WANG Lu, LI Xin, et al. Parameter optimization of isoquercetin extracting from mulberry leaves by hydrothermal method[J]. Transactions of the Chinese society of agricultural engineering,2019,35(9):308−314. doi: 10.11975/j.issn.1002-6819.2019.09.037

    WANG Xingmin, WANG Lu, LI Xin, et al. Parameter optimization of isoquercetin extracting from mulberry leaves by hydrothermal method [J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(9): 308-314. doi: 10.11975/j.issn.1002-6819.2019.09.037
    [25]
    FILIP S, PAVLIĆ B, VIDOVIĆ S, et al. Optimization of microwave-assisted extraction of polyphenolic compounds from ocimum basilicum by response surface methodology[J]. Food Analytical Methods,2017,10(7):2270−2280. doi: 10.1007/s12161-017-0792-7
    [26]
    蓝蔚青, 胡潇予, 阮东娜, 等. 傅里叶红外结合拉曼分析卡拉胶寡糖对南美白对虾蛋白结构影响[J]. 光谱学与光谱分析,2019,39(8):2507−2514. [LAN Weiqing, HU Xiaoyu RUAN Dongna, et al. Effects of carrageenan oligosaccharides on protein structure of penaeus vannamei by fourier transform infrared and micro-raman spectroscopy[J]. Spectroscopy and Spectral Analysis,2019,39(8):2507−2514.

    LAN Weiqing, HU Xiaoyu RUAN Dongna, et al. Effects of carrageenan oligosaccharides on protein structure of penaeus vannamei by fourier transform infrared and micro-raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2507-2514.
    [27]
    陈晓霞. 球状乳蛋白在甘油模型体系中稳定性差异及机理[D]. 无锡: 江南大学, 2019.

    CHEN Xiaoxia. Stability difference and mechanism of globular milk protein in glycerol model system [D]. Wuxi: Jiangnan University, 2019.
    [28]
    孙佳悦, 钱方, 姜淑娟, 等. 基于红外光谱分析热处理对牛乳蛋白质二级结构的影响[J]. 食品科学, 2017, 38(23): 82-86.

    SUN Jiayue, QIAN Fang, JIANG Shujuan, et al. Effects of heat treatment on protein secondary structure of milk based on infrared spectroscopy [J]. Food Science, 2017, 38(23): 82-86.
    [29]
    张露, 徐亮, 涂宗财, 等. 基于荧光光谱技术的异槲皮素抑制晚期糖基化产物形成的机制研究[J]. 光谱学与光谱分析,2020,40(12):3755−3760. [ZHANG Lu, XU Liang, TU Zongcai, et al. Study on the inhibition mechanism of isoquercetin on the formation of advanced glycation products based on fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(12):3755−3760.

    ZHANG Lu, XU Liang, TU Zongcai, et al. Study on the inhibition mechanism of isoquercetin on the formation of advanced glycation products based on fluorescence spectroscopy [J]. Spectroscopy and Spectral Analysis, 2020, 40(12): 3755-3760.
    [30]
    张和平, 德力格尔桑, 郭军, 等. 高压下牛乳IgG的变性及稳定化作用[J]. 食品科学,1998(4):10−12,65. [ZHANG Heping, DE Ligersan, GUO Jun, et al. Denaturation and stabilization of milk IgG under high pressure[J]. Food Science,1998(4):10−12,65. doi: 10.3321/j.issn:1002-6630.1998.04.003

    ZHANG Heping, DE Ligersan, GUO Jun, et al. Denaturation and stabilization of milk IgG under high pressure [J]. Food Science, 1998(4): 10-12+65. doi: 10.3321/j.issn:1002-6630.1998.04.003
    [31]
    胡志和, 程凯丽, 鲁丁强, 等. 超高压处理引发乳糖酶活力的变化与荧光强度的关系[J]. 食品科学,2021,43(1):111−118. [HU Zhihe, CHENG Kaili, LU Dingqiang, et al. Relationship between the activity and fluorescence intensity of lactase induced by ultrahigh pressure treatment[J]. Food Science,2021,43(1):111−118.

    HU Zhihe, CHENG Kaili, LU Dingqiang, et al. Relationship between the activity and fluorescence intensity of lactase induced by ultrahigh pressure treatment[J]. Food Science, 2021, 43(1): 111-118.
  • Cited by

    Periodical cited type(10)

    1. 邓少颖,孙健,朱红,岳瑞雪,张毅,张文婷,马晨. 双螺杆挤压甘薯膨化圈工艺优化及其品质评价. 食品研究与开发. 2025(02): 108-118 .
    2. 刘晓飞,吴浚滢,赵香香,戚月娜,刘畅,张娜. 超微粉碎对4种米的理化特性及抗氧化能力的影响. 粮食与油脂. 2023(04): 26-31 .
    3. 阮蕴莹,邓媛元,张雁,魏振承,唐小俊,李萍,张元,王智明,刘光,张名位. 不同葡萄糖当量值预消化大米膨化粉的理化性质和结构特性. 食品科学. 2023(14): 29-36 .
    4. 肖家喜,段映羽,邹晓琴,张名位,张瑞芬,刘磊,张元,马勤. 冲调米粉酶解耦合挤压膨化工艺优化及其产品性质分析. 中国粮油学报. 2023(08): 49-57 .
    5. 张新振,梁进,李雪玲,孙玥,高洋,王冉,刘杰梅,徐雪野,张歌兴,李贝贝,钟杨,周颖娣,李志鑫. 蓝莓渣复合籼米冲调粉的配方优化及品质分析. 中国粮油学报. 2023(09): 35-41 .
    6. 王晨,王燕,吴卫国,廖卢艳. 双螺杆挤压复合方便粥配方优化及品质分析. 食品工业科技. 2022(05): 245-254 . 本站查看
    7. 许立益,余宏达,江冬怡,郑经绍,林嘉尉,黄苇. 紫米与籼米复配比对复配粉性质及紫米粉丝品质的影响. 食品工业科技. 2022(17): 114-121 . 本站查看
    8. 赵起圆,宋春丽,周恪驰,任健,孙天颖. 挤压膨化对全籽粒玉米粉加工特性的研究. 食品科技. 2022(09): 138-143 .
    9. 张新振,杨涛,蒋依婷,琚飞龙,高洋,孙玥,李雪玲,梁进. 蓝莓渣复合籼米膨化工艺优化及抗氧化活性研究. 食品与机械. 2022(10): 194-200 .
    10. 王崑仑,管立军,高扬,任传英,严松,李家磊,季妮娜,李波,周野. 糙米速食米粥工艺优化及其结构表征. 农业工程学报. 2022(S1): 310-320 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (224) PDF downloads (14) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return