Citation: | LI Shaohua, LI Shen, LI Cuicui. Research Progress on Identification and Adulteration Detection Technologies of Edible Oil[J]. Science and Technology of Food Industry, 2022, 43(20): 430−436. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090293. |
[1] |
唐佳妮, 刘东红. 食用植物油掺假鉴别方法研究进展[J]. 中国粮油学报,2009,24(11):158−162. [TANG J N, LIU D H. Research progress on authen tication methods of edible vegetable oils[J]. Journal of the Chinese Cereals and Oils Association,2009,24(11):158−162.
|
[2] |
KOU Y X, LI Q I, LIU X L, et al. Efficient detection of edible oils adulterated with used frying oils through PE-film-based FTIR spectroscopy combined with DA and PLS[J]. Journal of Oleo Science,2018,67:1083−1089. doi: 10.5650/jos.ess18029
|
[3] |
王芳, 王艳华, 侯俊财. 芝麻油中掺加大豆油鉴别方法的研究[J]. 中国粮油学报,2020,35(2):147−151,158. [WANG F, WANG Y H, HOU J C. The analytical methods of identification of soybean oil in fake sesame oil[J]. Journal of the Chinese Cereals and Oils Association,2020,35(2):147−151,158. doi: 10.3969/j.issn.1003-0174.2020.02.025
|
[4] |
常颖萃. 基于气相色谱法的福建油茶籽油真伪鉴别[J]. 福建林业科技,2019,46(2):30−34. [CHANG Y C. Identifying Fujian camellia oil adulteration by gas chromatography[J]. Journal of Fujian Forestry Science and Technology,2019,46(2):30−34.
|
[5] |
CAO G, DING C, RUAN D, et al. Gas chromatography-mass spectrometry based profiling reveals six monoglycerides as markers of used cooking oil[J]. Food Control,2019,96:494−498. doi: 10.1016/j.foodcont.2018.10.013
|
[6] |
TIAN L, ZENG Y, ZHENG X, et al. Detection of peanut oil adulteration mixed with rapeseed oil using gas chromatography and gas chromatography-ion mobility spectrometry[J]. Food Anal Method,2019,12:2282−2292. doi: 10.1007/s12161-019-01571-y
|
[7] |
XING C R, YUAN X Y, WU X Y, et al. Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography[J]. Lebensmittel-Wissenschaft und-Technologie,2019,108(7):437−445.
|
[8] |
ZHANG L, LI P, SUN X, et al. Classification and adulteration detection of vegetable oils based on fatty acid profiles[J]. Journal of Agricultural and Food Chemistry,2014,62(34):8745−8751. doi: 10.1021/jf501097c
|
[9] |
AADIL B, SANTIAGO M R, MARIA G R, et al. Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics[J]. Food Chemistry,2017,215:245−255. doi: 10.1016/j.foodchem.2016.07.140
|
[10] |
ANAM J C, ANTONIO G C, ESTEFANIA P C, et al. Fast-HPLC fingerprinting to discriminate olive oil from other edible vegetable oils by multivariate classification methods[J]. Journal of Aoac International,2017,100(2):345−350. doi: 10.5740/jaoacint.16-0411
|
[11] |
AL-RIMAWI. Development and validation of a simple reversed-phase HPLC-UV method for determination of malondialdehyde in olive oil[J]. Journal of the American Oil Chemists Society,2015,92(7):1−5.
|
[12] |
WANG W, YU Q F, XIAO Y, et al. Rapid determination of long-chain aliphatic aldehyde in gutter oil by fluorescent derivatization-high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry,2017,45(5):770−776.
|
[13] |
卢万鸿, 李鹏, 王楚彪, 等. 桉树杂交种与其亲本的近红外光谱判别[J]. 光谱学与光谱分析,2020,40(3):215−219. [LU W H, LI P, WANG C B, et al. Identifying eucalypt hybtids and cross parents by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(3):215−219.
|
[14] |
王挥, 宋菲, 曹飞宇, 等. 基于红外特征光谱的初榨椰子油掺假检测技术研究[J]. 热带农业科学,2017(5):70−74. [WANG H, SONG F, CAO F Y, et al. Adulteration detection of virgin coconut oil based on characteristics of infrared spectra[J]. Chinese Journal of Tropical Agriculture,2017(5):70−74.
|
[15] |
DACOSTA G B, FERNANDES D D S, GOMES A A, et al. Using near infrared spectroscopy to classify soybean oil according to expiration date[J]. Food Chemistry,2016,196:539−543. doi: 10.1016/j.foodchem.2015.09.076
|
[16] |
陈洪亮, 曾山, 王斌, 等. 优化基于近红外光谱的联合间隔偏最小二乘法建模检测芝麻油掺伪含量[J]. 中国油脂,2020,45(2):86−90. [CHEN H L, ZENG S, WANG B, et al. Optimization of joint interval partial least squares modeling based on near infrared spectroscopy for detection of adulteration content in sesame oil[J]. China Oils Fats,2020,45(2):86−90. doi: 10.12166/j.zgyz.1003-7969/2020.02.017
|
[17] |
BERTOL G, ALEXANDRE F, PONTAROLO R. Differentiation of Mikania glomerata and Mikania laevigata species through mid-infrared spectroscopy and chemometrics guided by HPLC-DAD analyses[J]. Revista Brasileira de Farmacognosia,2021,31(4):1−11.
|
[18] |
孙鸿祥. 试析液态食品掺假检测中近红外光谱技术的运用[J]. 食品安全导刊,2020(18):170. [SUN H X. Application of near infrared spectroscopy in detection of adulteration of liquid food[J]. Food Safety Guide,2020(18):170.
|
[19] |
CONSUELO P, ISABEL E D, SOFIA R T, et al. Determination of the peroxide value in extra virgin olive oils through the application of the stepwise orthogonalisation of predictors to mid-infrared spectra[J]. Food Control,2013,34(1):158−167. doi: 10.1016/j.foodcont.2013.03.025
|
[20] |
石晓妮. 基于中红外光谱技术的甘氨酸微量元素螯合物掺混硫酸盐分析方法研究[D]. 北京: 中国农业科学院, 2020.
SHI X N. Analysis of chelate of glycine trace element mixing sulfate based on middle infrared spectroscopy[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
|
[21] |
MOHARAM M, ABBAS L. A study on the effect of microwave heating on the properties of edible oils using FTIR spectroscopy[J]. African Journal of Microbiology Research,2010,4(19):1921−1927.
|
[22] |
MU T, CHEN S, ZHANG Y, et al. Portable detection and quantification of olive oil adulteration by 473-nm laser-induced fluorescence[J]. Food Analytical Methods,2016,9(1):275−279. doi: 10.1007/s12161-015-0199-2
|
[23] |
XU J, LIU X, WANG Y. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique[J]. Food Chemistry,2016,212:72−77. doi: 10.1016/j.foodchem.2016.05.158
|
[24] |
吴希军, 崔耀耀, 潘钊, 等. 三维荧光光谱结合Zernike图像矩快速鉴别掺伪芝麻油[J]. 光谱学与光谱分析,2018,38(8):2456−2461. [WU X J, CUI Y Y, PAN Z, et al. Rapid identification of fake sesame oil by three-dimensional fluorescence spectroscopy combined with Zernike image moment[J]. Spectrosc Spect Anal,2018,38(8):2456−2461.
|
[25] |
DONG W, ZHANG Y, ZHANG B, et al. Rapid prediction of fatty acid composition of vegetable oil by Raman spectroscopy coupled with least squares support vector machines[J]. Journal of Raman Spectroscopy,2013,44(12):1739−1745. doi: 10.1002/jrs.4386
|
[26] |
GOUVINHAS I, MACHADO N, CARVALHO T, et al. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages[J]. Talanta,2015,132:829−835. doi: 10.1016/j.talanta.2014.10.042
|
[27] |
王季锋. 基于降温扰动拉曼光谱的食用油掺假鉴别研究[D]. 大连: 大连海事大学, 2020.
WANG J F. Identification of adulterated edible oils by Raman spectroscopy with cooling perturbation[D]. Dalian: Dalian Maritime University, 2020.
|
[28] |
ZHANG W, LI N, FENG Y, et al. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry[J]. Food Chemistry,2015,185:326−332. doi: 10.1016/j.foodchem.2015.04.005
|
[29] |
REGINA A S, JOHN C C, JOSE S T, et al. Identifying and quantifying adulterants in extra virgin olive oil of the picual varietal by absorption spectroscopy and non-linear modeling[J]. Journal of Agricultural and Food Chemistry,2015,63(23):5646−5652. doi: 10.1021/acs.jafc.5b01700
|
[30] |
CAO Y Q, CHEN J N, HUANG P J, et al. Inspecting human colon adenocarcinoma cell lines by using terahertz time-domain reflection spectroscopy[J]. Spectrochim Acta A,2019,211:356−362. doi: 10.1016/j.saa.2018.12.023
|
[31] |
LU S, ZHANG X, ZHANG Z, et al. Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy[J]. Food Chemistry,2016,211:494−501. doi: 10.1016/j.foodchem.2016.05.079
|
[32] |
LIU W, LIU C H, YU J J, et al. Discrimination of geographical origin of extra virgin olive oils using Terahertz spectroscopy combined with chemometrics[J]. Food Chemistry,2018,251:86−92. doi: 10.1016/j.foodchem.2018.01.081
|
[33] |
陈珊珊, 李然, 俞捷, 等. 永磁低场核磁共振分析仪原理和应用[J]. 生命科学仪器,2009(10):49−53. [CHEN S S, LI R, YU J, et al. The principle and application of nuclear magnetic resonance analyst instrument in low-field[J]. Life Science Instruments,2009(10):49−53. doi: 10.3969/j.issn.1671-7929.2009.10.013
|
[34] |
涂斌, 宋志强, 郑晓, 等. 基于激光近红外的稻米油掺伪定性-定量分析[J]. 光谱学与光谱分析,2015,35:1539−1545. [TU B, SONG Z Q, ZHENG X, et al. Qualitative-quantitative analysis of adulteration of rice oil based on laser near infrared[J]. Spectroscopy and Spectral Analysis,2015,35:1539−1545. doi: 10.3964/j.issn.1000-0593(2015)06-1539-07
|
[35] |
KATAYOUN J, MARYAM P. Discrimination of edible oils and fats by combination of multivariate patternrecognition and FT-IR spectroscopy: A comparative study between different modeling methods[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013(104):175−181.
|
[36] |
杜蘅, 胡毓元, 盖争艳, 等. 低场核磁共振技术在油脂掺伪鉴别中的应用[J]. 中国粮油学报,2019,34(3):113−118,124. [DU H, HU Y Y, GAI Z Y, et al. LF-NMR application on distinguishing study of adulterated grape seed[J]. Journal of the Chinese Cereals and Oils Association,2019,34(3):113−118,124. doi: 10.3969/j.issn.1003-0174.2019.03.018
|
[37] |
陆燕, 许鹏翔, 刘秋金, 等. 冬青油真伪鉴别方法研究[J]. 广东石油化工学院学报,2019,29(6):73−77. [LU Y, XU P X, LIU Q J, et al. Research on identification of wintergreen oil[J]. Journal of Guangdong Institute of Petrochemical Industry,2019,29(6):73−77. doi: 10.3969/j.issn.2095-2562.2019.06.016
|
[38] |
ZHU W R, WANG X, CHEN L H. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics[J]. Food Chemistry,2017,216:268−274. doi: 10.1016/j.foodchem.2016.08.051
|
[39] |
BONTEMPO L, PAOLINI M, FRANCESCHI P, et al. Characterisation and attempted differentiation of European and extra-European olive oils using stable isotope ratio analysis[J]. Food Chemistry,2019,276:782−789. doi: 10.1016/j.foodchem.2018.10.077
|
[40] |
王道兵, 岳红卫, 高冠勇, 等. 花生油生产过程中稳定同位素变化规律及影响因素研究[J]. 核农学报,2020,34(增刊ement):0104−0109. [WANG D B, YUE H W, GAO G Y, et al. Stable isotopic variation and influence factors in peanut oil during processing[J]. Journal of Nuclear Agricultural Sciences,2020,34(Supplement):0104−0109.
|
[41] |
PAOLINI M, BONTEMPO L, CAMIN F. Compound-specific δ13C and δ2H analysis of olive oil fatty acids[J]. Talanta,2017,174:38−43. doi: 10.1016/j.talanta.2017.05.080
|
[42] |
李安, 马红枣, 潘立刚, 等. 稳定同位素比值质谱法鉴别猪油中掺杂石蜡的研究初探[J]. 中国油脂,2017,42(3):88−90, 94. [LI A, MA H Z, PAN L W, et al. Preliminary study on identification of paraffin in lard by stable isotope ratio mass spectrometry method[J]. China Oils and Fats,2017,42(3):88−90, 94. doi: 10.3969/j.issn.1003-7969.2017.03.018
|
[43] |
KIM J, YANG S, JO C, et al. Comparison of carbon stable isotope and fatty acid analyses for the authentication of perilla oil[J]. European Journal of Lipid Science and Technology,2018,120:170−480.
|
[44] |
靳欣欣, 潘立刚, 李安. 稳定同位素质谱法鉴别芝麻油中掺杂大豆油、玉米油的研究[J]. 中国油脂,2020,45(3):32−37. [JIN X X, PAN L G, LI A. Identification of adulterated soybean oil and corn oil in sesame oil by isotope ratio mass spectrometry[J]. China Oils and Fats,2020,45(3):32−37. doi: 10.12166/j.zgyz.1003-7969/2020.03.008
|
[45] |
吴玉銮, 董浩, 王超, 等. 商品植物油的稳定碳、氢同位素比值的测定[J]. 现代食品科技,2016,32(11):323−327. [WU Y L, DONG H, WANG C, et al. Determination of stable carbon and hydrogen isotope ratios of commercial vegetable oils[J]. Modern Food Science and Technology,2016,32(11):323−327.
|
[46] |
王道兵, 岳红卫, 高冠勇, 等. 基于稳定氢氧同位素技术的花生油掺假检测技术研究[J/OL]. 中国粮油学报: 1−9[2021-04-06]. http://kns.cnki.net/kcms/detail/11.2864.TS.20210406.1015.004.html.
WANG D B, YUE H W, GAO G Y, et al. Research on the detection of adulterated peanut oil by stable hydrogen/oxygen isotope analysis[J/OL]. Journal of the Chinese Cereals and Oils Association: 1−9[2021-04-06]. http://kns.cnki.net/kcms/detail/11.2864.TS.20210406.1015.004.html.
|
[47] |
PORTARENA S, BALDACCHINI C, BRUGNOLI E. Geographical discrimination of extra-virgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis[J]. Food Chemistry,2017,215:1−6. doi: 10.1016/j.foodchem.2016.07.135
|
[48] |
陈达, 许云涛, 李奇峰. 基于多尺度二维相关拉曼光谱的橄榄油掺杂检测[J]. 纳米技术与精密工程,2016,14(1):60−65. [CHEN D, XU Y T, LI Q F. Detection of olive oil adulteration based on multi-scale two-dimensional correlation Raman spectroscopy[J]. Nanotechnology and Precision Engineering,2016,14(1):60−65.
|
[49] |
LIU Y, YAO L Y, XIA Z Z, et al. Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs)[J]. Spec Acta A,2020,246:118−973.
|
[50] |
SOHNG W, PARK Y, JANG D, et al. Incorporation of two-dimensional correlation analysis into discriminant analysis as a potential tool for improving discrimination accuracy: Near-infrared spectroscopic discrimination of adulterated olive oils[J]. Talanta,2020,212:120748. doi: 10.1016/j.talanta.2020.120748
|
[51] |
YANG J, ZHAO K S, HE Y J. Quality evaluation of frying oil deterioration by dielectric spectroscopy[J]. Journal of Food Engineering,2016,180:69−76. doi: 10.1016/j.jfoodeng.2016.02.012
|
[52] |
李淑静, 赵婷, 葛含光, 等. 气相色谱-离子迁移谱应用于橄榄油的掺假鉴别[J]. 食品研究与开发,2018,39(15):109−116. [LI S J, ZHAO T, GE H G, et al. Establish gas chromatography-ion mobility spectrometry method for identification of olive oil adulteration[J]. Food Research and Development,2018,39(15):109−116. doi: 10.3969/j.issn.1005-6521.2018.15.022
|
[53] |
DIAS L G, FERNANDES A, VELOSO A C A, et al. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue[J]. Food Chemistry,2014,160:321−329. doi: 10.1016/j.foodchem.2014.03.072
|
[54] |
PENG Q, XU Q, DULA B G, et al. Discrimination of geographical origin of camellia seed oils using electronic nose characteristics and chemometrics[J]. Journal Für Verbraucherschutz Und Lebensmittelsicherheit,2020,15(9):263−270.
|
[55] |
KALOGIANNI D, BAZAKOS C, BOUTSIKA L, et al. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres[J]. Journal of Agricultural and Food Chemistry,2015,63:3121−3128. doi: 10.1021/jf5054657
|