Citation: | ZUO Mengnan, LIU Wei, QUAN Qi, et al. Research Progress of Lactic Acid Bacteria High-density Culture Technology[J]. Science and Technology of Food Industry, 2022, 43(19): 436−445. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090289. |
[1] |
WU Z, WU J, CAO P, et al. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid[J]. Journal of Dairy Science,2017,100(6):4223−4229. doi: 10.3168/jds.2017-12640
|
[2] |
ZAGOREC M, CHAMPOMIER-VERGES M C. Lactobacillus sakei: A starter for sausage fermentation, a protective culture for meat products[J]. Microorganisms,2017,5(3):56. doi: 10.3390/microorganisms5030056
|
[3] |
CORONA O, ALFONZO A, VENTIMIGLIA G, et al. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production[J]. Food Micro-biology,2016,59:43−56. doi: 10.1016/j.fm.2016.05.006
|
[4] |
XIA Y J, LIU X F, WANG G Q, et al. Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle[J]. Food Control,2017,78(1):126−131.
|
[5] |
ELENA B, VINCENZO C, BENEDETTA B, et al. Wild Lacto-bacillus casei group strains: Potentiality to ferment plant derived juices[J]. Foods (Basel, Switzerland),2020,9(3):314.
|
[6] |
TAWEECHOTIPATR M, IYER C, SPINLER J K, et al. Lacto-bacillus saerimneri and Lactobacillus ruminis: Novel human-derived probiotic strains with immunomodulatory activities[J]. Fems Microbiology Letters,2009,293(1):65−72. doi: 10.1111/j.1574-6968.2009.01506.x
|
[7] |
ZHU J, ZHAO L A, GUO H Y, et al. Immunomodulatory effects of novel Bifidobacterium and Lactobacillus strains on murine macrophage cells[J]. African Journal of Microbiology Research,2011,5(1):8−15.
|
[8] |
LYU X, LIU G, SUN X, et al. Short communication: Nutrient consumption patterns of Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch fermentations[J]. Journal of Dairy Science,2017,100(7):5188−5194. doi: 10.3168/jds.2017-12607
|
[9] |
ZANG J Y, WANG T, PIOTR D, et al. Increasing lactose concentration is a strategy to improve the proliferation of Lactobacillus helveticus in milk[J]. Food Science & Nutrition,2021,9(2):1050−1060.
|
[10] |
DONG Z X, GU L, ZHANG J, et al. Optimisation for high cell density cultivation of Lactobacillus salivarius BBE 09-18 with response surface methodology[J]. International Dairy Journal,2014,34(2):230−236. doi: 10.1016/j.idairyj.2013.07.015
|
[11] |
TRONTEL A, BATUSIC A, GUSIC I, et al. Production of D- and L-lactic acid by Mono- and mixed cultures of Lactobacillus sp[J]. Food Technology and Biotechnology,2011,49(1):75−82.
|
[12] |
GIVRY S, DUCHIRO F. Optimization of culture medium and growth conditions for production of L-arabinose isomerase and D-xylose isomerase by Lactobacillus bifermentans[J]. Мicrobio-logy,2008,77(3):281−287.
|
[13] |
乔荣更, 贾宇, 张红星, 等. 可抑制口腔致病菌的乳酸菌筛选及其抑菌特性研究[J]. 食品与发酵工业,2021,47(11):1−9. [QIAO R G, JIA Y, ZHANG H X, et al. Screening of oral pathogen inhibiting lactic acid bacteria and its antibacterial properties[J]. Food and Fermentation Industries,2021,47(11):1−9.
QIAO R G, JIA Y, ZHANG H X, et al. Screening of oral pathogen inhibiting lactic acid bacteria and its antibacterial properties[J]. Food and Fermentation Industries, 2021, 47(11): 1-9.
|
[14] |
NOBRE C, DO NASCIMENTO A K C, SILVA S P, et al. Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum[J]. Bioresource Technology,2019,282:464−474. doi: 10.1016/j.biortech.2019.03.053
|
[15] |
CARDELLE-COBAS A, CORZO N, OLANO A, et al. Galactooligosaccharides derived from lactose and lactulose: Influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth[J]. International Journal of Food Microbiology,2011,149(1):81−87. doi: 10.1016/j.ijfoodmicro.2011.05.026
|
[16] |
LIANG S, GAO D, LIU H, et al. Metabolomic and proteomic analysis of D-lactate-producing Lactobacillus delbrueckii under various fermentation conditions[J]. Journal of Industrial Microbio-logy & Biotechnology,2018,45(8):681−696.
|
[17] |
JIANG Y Z, SHI Y Y, LI R, et al. The peptides in oat and malt extracts that are preferentially absorbed by Lactobacillus plantarum and stimulates its proliferation in milk[J]. International Journal of Food Science and Technology,2021,56(9):4690−4699. doi: 10.1111/ijfs.15140
|
[18] |
MENGFAN X, SHANHU H, YIWEN W, et al. Integrated transcriptome and proteome analyses reveal protein metabolism in Lactobacillus helveticus CICC22171[J]. Frontiers in Microbiology,2021,12:635685. doi: 10.3389/fmicb.2021.635685
|
[19] |
HOM S J, ASPMO S I, EIJSINK V G H. Growth of Lactobacillus plantarum in media containing hydrolysates of Fish viscera[J]. Journal of Applied Microbiology,2005,99(5):1082−1089. doi: 10.1111/j.1365-2672.2005.02702.x
|
[20] |
MANZOOR A, QAZI J I, UL HAQ I, et al. Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy[J]. Journal of Biological Engineering,2017,11(1):17. doi: 10.1186/s13036-017-0059-2
|
[21] |
郭艳荣. 格氏乳杆菌体外筛选及高密度培养工艺研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
GUO Y R. The in vitro screening of Lactobacillus gasseri and the research of high cell density culture[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[22] |
冯志伟. Pediococcus acidilactici IMAU95219增殖培养基及高密度培养工艺优化[D]. 呼和浩特: 内蒙古农业大学, 2020.
FENG Z W. Optimization of enrichment medium and high cell density cultivation of Pediococcus acidilactici IMAU95219[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[23] |
DUPREE D E, PRICE R E, BURGESS B A, et al. Effects of sodium chloride or calcium chloride concentration on the growth and survival of Escherichia coli O157: H7 in model vegetable fermentations[J]. Journal of Food Protection,2019,82(4):570−578. doi: 10.4315/0362-028X.JFP-18-468
|
[24] |
WU J Y, YAN X, WENG P F, et al. Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq[J]. Journal of Basic Microbiology,2021,61(6):576−590. doi: 10.1002/jobm.202100051
|
[25] |
DEZA M A C, GRILLO-PUERTAS M, SALVA S, et al. Inorganic salts and intracellular polyphosphate inclusions play a role in the thermotolerance of the immunobiotic Lactobacillus rhamnosus CRL1505[J]. Plos One,2017,12(6):e0179242. doi: 10.1371/journal.pone.0179242
|
[26] |
YAO C, CHOU J, WANG T, et al. Pantothenic acid, vitamin C, and biotin play important roles in the growth of Lactobacillus helveticus[J]. Frontiers in Microbiology,2018,9:1194. doi: 10.3389/fmicb.2018.01194
|
[27] |
RYSSEL M, HVIID A M M, DAWISH M S, et al. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity[J]. Microbiology-Sgm,2014,160:2551−2559. doi: 10.1099/mic.0.082586-0
|
[28] |
MIN M, BUNT C R, MASON S L, et al. Non-dairy probiotic food products: An emerging group of functional foods[J]. Critical Reviews in Food Science & Nutrition,2019,59(16):2626−2641.
|
[29] |
SHORI A B. The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage[J]. Biocatalysis and Agricultural Biotechnology,2015,4(4):423−431. doi: 10.1016/j.bcab.2015.09.010
|
[30] |
WANG K, MA C, GONG G, et al. Fermentation parameters, antioxidant capacities, and volatile flavor compounds of tomato juice-skim milk mixtures fermented by Lactobacillus plantarum ST-III[J]. Food Science and Biotechnology,2019,28(4):1147−1154. doi: 10.1007/s10068-018-00548-7
|
[31] |
刘继业. 直投式乳酸菌发酵剂制备技术的研究及其应用[D]. 泰安: 山东农业大学, 2017.
LIU J Y. Study on preparing technology of the lactic acid bacteria direct vat set and its application[D]. Taian: Shandong Agricultural University, 2017.
|
[32] |
PARTANEN L, MARTTINEN N, ALATOSSAVA T. Fats and fatty acids as growth factors for Lactobacillus delbrueckii[J]. Systematic and Applied Microbiology,2001,24(4):500−506. doi: 10.1078/0723-2020-00078
|
[33] |
TAN W S, BUDINICH M F, WARD R, et al. Optimal growth of Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids[J]. Journal of Dairy Science,2012,95(4):1680−1689. doi: 10.3168/jds.2011-4847
|
[34] |
陈百莹, 郑苗, 邓泽元, 等. 植物乳杆菌ZJ316培养基优化和高密度培养的研究[J]. 中国食品学报,2020,20(7):65−74. [CHEN B Y, ZHENG M, DENG Z Y, et al. Optimization of fermentation medium and the high-density culturing conditions for Lactobacillus plantarum ZJ316[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):65−74.
CHEN B Y, ZHENG M, DENG Z Y, et al. Optimization of fermentation medium and the high-density culturing conditions for Lactobacillus plantarum ZJ316[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(7): 65-74.
|
[35] |
朱孔亮. 泡菜用乳酸菌的筛选、高密度培养及菌剂配方的研究[D]. 无锡: 江南大学, 2014.
ZHU K L. Research on screening, high cell density cultivation and mixture of lactic acid bacteria for pickle fermentation[D]. Wuxi: Jiangnan University, 2014.
|
[36] |
包维臣. 德氏乳杆菌保加利亚亚种ND02高密度培养及冷冻保护的研究[D]. 呼和浩特: 内蒙古农业大学, 2012.
BAO W C. The study on high cell density culture and freeze-drying protection of Lactobacillus delbrueckii subsp. Bulgaricus ND02[D]. Hohhot: Inner Mongolia Agricultural University, 2012.
|
[37] |
赵燕霞. 嗜酸乳杆菌IMAU30067高密度培养工艺研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
ZHAO Y X. Study on high cell density culture of Lactobacillus acidophilus IMAU30067[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
|
[38] |
郑柳青. 鼠李糖乳杆菌LR-ZB1107-01的益生特性及其高密度培养的研究[D]. 广州: 华南理工大学, 2020.
ZHENG L Q. Study on properties of Lactobacillus rhamnosus LR-ZB1107-01 and its high density culture[D]. Guangzhou: South China University of Technology, 2020.
|
[39] |
丛美楠. 保加利亚乳杆菌的低成本培养、保藏及初步应用研究[D]. 厦门: 集美大学, 2017.
CONG M N. Low cost culture, preservation and preliminary application study of Lactobacillus bulgaricus[D]. Xiamen: Jimei University, 2017.
|
[40] |
涂家霖, 赵珊, 周钦育, 等. 凝结芽孢杆菌13002产芽孢条件优化[J]. 食品工业科技,2021,42(6):88−96. [TU J L, ZHAO S, ZHOU Q Y, et al. Optimizing spore-forming conditions of Bacillus coagulans 13002[J]. Science and Technology of Food Industry,2021,42(6):88−96.
TU J L, ZHAO S, ZHOU Q Y, et al. Optimizing spore-forming conditions of Bacillus coagulans 13002[J]. Science and Technology of Food Industry, 2021, 42(6): 10.
|
[41] |
吕秀明, 梁金钟. 长双歧杆菌耐氧菌株选育及其高密度发酵条件的研究[J]. 食品工业科技,2016,37(7):161−165. [LÜ X M, LIANG J Z. Breeding of oxygen- resistant Bifidobacterium longum and its high- density fermentation conditions[J]. Science and Technology of Food Industry,2016,37(7):161−165.
LYU X M, LIANG J Z. Breeding of oxygen- resistant Bifidobacterium longum and its high- density fermentation conditions[J]. Science and Technology of Food Industry, 2016, 37(7): 161-165.
|
[42] |
张兴昌. 嗜热链球菌高密度培养及冷冻保护的研究[D]. 呼和浩特: 内蒙古农业大学, 2011.
ZHANG X C. The study on high cell density cultivation and freeze-drying protection of Streptococcus thermophilus[D]. Hohhot: Inner Mongolia Agricultural University, 2011.
|
[43] |
KATARZYNA Ś, AGNIESZKA C. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium[J]. Biology,2020,9(12):E423. doi: 10.3390/biology9120423
|
[44] |
张艳丽. 乳酸菌的高密度培养及菌剂的制备和应用[D]. 杭州: 浙江工业大学, 2016.
ZHANG Y L. High cell density fermentation and agent preparation of Lactobacillus[D]. Hangzhou: Zhejiang University of Technology, 2016.
|
[45] |
ARCHACKA M, CELINSKLIŃSKA E, BIAŁAS W. Techno-economic analysis for probiotics preparation production using optimized corn flour medium and spray-drying protective blends[J]. Food and Bioproducts Processing,2020,123:354−366. doi: 10.1016/j.fbp.2020.07.002
|
[46] |
THAKUR K, XU G Y, ZHANG J G, et al. In vitro prebiotic effects of bamboo shoots and potato peel extracts on the proliferation of lactic acid bacteria under simulated git conditions[J]. Frontiers in Microbiology,2018,9:2114. doi: 10.3389/fmicb.2018.02114
|
[47] |
COGHETTO C C, VASCONCELOS C B, BRINQUES G B. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue[J]. Brazilian Journal of Microbiology,2016,47(4):941−948. doi: 10.1016/j.bjm.2016.06.003
|
[48] |
KRZYWONOS M, EBERHARD T. High density process to cultivate Lactobacillus plantarum biomass using wheat stillage and sugar beet molasses[J]. Electronic Journal of Biotechnology,2011,14(2):1−9.
|
[49] |
PAPIZADEH M, ROHANI M, NAHREVANIAN H, et al. Using various approaches of design of experiments for high cell density production of the functionally probiotic Lactobacillus plantarum strain RPR42 in a cane molasses-based medium[J]. Current Microbiology,2020,77(8):1756−1766. doi: 10.1007/s00284-020-01979-4
|
[50] |
闫晓哲. 苹果渣乳酸发酵综合利用及其发酵动力学研究[D]. 西安: 陕西科技大学, 2018.
YAN X Z. Comprehensive utilization of apple pomace through lactic acid fermentation and studies on the fermentation kinetics[D]. Xi’an: Shanxi University of Science and Technology, 2018.
|
[51] |
GHERAB F Z R E, HASSAINE O, ZADI-KARAM H, et al. Statistical optimization for the development of a culture medium based on the juice of waste-dates for growth of Lactococcus lactis LCL strain by using the Plackett–Burman and response surface methodology[J]. Waste and Biomass Valorization,2019,10(10):2943−2957. doi: 10.1007/s12649-018-0283-0
|
[52] |
梁婉婷. 以海藻残渣为发酵底物乳杆菌增殖条件的研究[D]. 哈尔滨: 东北农业大学, 2015.
LING W T. Research of proliferation conditions by Lactobacillus fermentation of algal carcass[D]. Harbin: Northeast Agricultural University, 2015.
|
[53] |
LIEN Y H, LIU F Y, CHEN J N, et al. Using the juice of water lettuce (Pistia stratiotes) as culture medium to increase the cell density and the production of microbial lipid[J]. Biotechnology and Bioprocess Engineering,2019,24(2):395−400. doi: 10.1007/s12257-018-0404-4
|
[54] |
KUMAR M N, GIALLELI A I, MASSON J B, et al. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites[J]. Bioresource Technology,2014,165:332−335. doi: 10.1016/j.biortech.2014.02.110
|
[55] |
张文娟. 调控混合菌群和营养结构强化餐厨垃圾产乳酸效能及机制研究[D]. 上海: 东华大学, 2020.
ZHANG W J. Regulation of mixed microbiome and nutritional structure to enhance lactic acid production from kitchen waste: Effectiveness and mechanism[D]. Shanghai: Donghua University, 2020.
|
[56] |
ADU K T, WILSON R, NICHOLS D S, et al. Proteomic analysis of Lactobacillus casei GCRL163 cell-free extracts reveals a SecB homolog and other biomarkers of prolonged heat stress[J]. Plos One,2018,13(10):e0206317. doi: 10.1371/journal.pone.0206317
|
[57] |
TRONTEL A, BARŠIĆ V, SLAVICA A, et al. Modelling the effect of different substrates and temperature on the growth and lactic acid production by Lactobacillus amylovorus DSM 20531T in batch process[J]. Food Technology & Biotechnology,2010,48(3):352−361.
|
[58] |
张瑶, 李啸, 潘冬瑞, 等. 植物乳杆菌高密度培养通气条件的研究[J]. 中国酿造,2013,32(9):123−6. [ZHANG Y, LI X, PAN D R, et al. Ventilation conditions for high density cultivation of Lacto-bacillus plantarum[J]. China Brewing,2013,32(9):123−6. doi: 10.3969/j.issn.0254-5071.2013.09.032
ZHANG Y, LI X, PAN D R, et al. Ventilation conditions for high density cultivation of Lactobacillus plantarum[J]. China Brewing, 2013, 32(9): 123-6. doi: 10.3969/j.issn.0254-5071.2013.09.032
|
[59] |
吴军林, 柏建玲, 莫树平, 等. 乳酸菌R8高密度培养的发酵工艺研究[J]. 现代食品科技,2018,34(2):164−170, 251. [WU J L, BAI J L, MO S P, et al. Optimization of culture conditions and medium of lactic acid bacteria R8 cultured in high density fermentation[J]. Modern Food Science and Technology,2018,34(2):164−170, 251.
WU J L, BAI J L, MO S P, et al. Optimization of culture conditions and medium of lactic acid bacteria R8 cultured in high density fermentation[J]. Modern Food Science and Technology, 2018, 34(2): 164-170, 251.
|
[60] |
GUTIERREZ-SARMIENTO W, VENTURA-CANSECO L, GUTIERREZ-MICELI F, et al. Optimization of biomass production, lactic acid, and gastrointestinal simulation survival of Lactobacillus plantarum bal-03-ittg cultured in stirred tank bioreactor[J]. Agrociencia,2020,54(2):147−162.
|
[61] |
DIETZ D, SABRA W, ZENG AP. Co-cultivation of Lactobacillus zeae and Veillonella criceti for the production of propionic acid[J]. Amb Express,2013,3(1):29. doi: 10.1186/2191-0855-3-29
|
[62] |
赖志城. 嗜热厌氧杆菌利用甘蔗渣发酵产氢及其高糖耐受菌株的转录特征研究[D]. 广州: 华南理工大学, 2014.
LAI Z C. Biohydrogen production from sugarcane bagasse by T. aotearoense SCUT27/Δldh and thetranscription analysis of the improved tolerance strain to high concentration substrate[D]. Guangzhou: South China University of Technology, 2014.
|
[63] |
安璟. 乳酸菌胁迫反应的影响因素及其耐热性的研究[D]. 武汉: 华中农业大学, 2019.
AN J. Study on the factors affecting the stress reaction of lactic acid bacteria and its thermotolerance[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[64] |
张起凡. 多抗逆性鼠李糖乳杆菌选育及冷冻干燥技术研究[D]. 济南: 齐鲁工业大学, 2015.
ZHANG Q F. Research on breeding high-resistance Lactobacillus and freeze-drying technology[D]. Jinan: Qilu University of Technology, 2015.
|
[65] |
杨婕, 郭金凤, 李宝坤, 等. 酸-冷交互胁迫对保护冷冻干燥发酵乳杆菌活性的作用[J]. 食品科学,2020,615(2):110−115. [YANG J, GUO J F, LI B K, et al. Cryoprotective effect of acid-cold cross stress on Lactobacillus fermentum[J]. Food Science,2020,615(2):110−115.
YANG J, GUO J F, LI B K, et al. Cryoprotective effect of acid-cold cross stress on Lactobacillus fermentum[J]. Food Science, 2020, 615(2): 110-115.
|
[66] |
杨然, 范光森, 郦金龙, 等. 重组毕赤酵母高产木聚糖酶菌株筛选及发酵条件优化[J]. 中国食品学报,2017,17(12):95−104. [YANG R, FAN G S, LI J L, et al. Screening of high-yield xylananse produced by recombinant Pichia pastoris and of its fermentation condition optimizing[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(12):95−104.
YANG R, FAN G S, LI J L, et al. Screening of High-yield Xylananse produced by Recombinant Pichia pastoris and of its fermentation condition optimizing[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(12): 95-104.
|
[67] |
张夙夙. 乳酸菌的乳糖/半乳糖代谢及其应用[D]. 济南: 山东大学, 2020.
ZHANG S S. The metabolism of lactose and galactose in lactic acid bacteria and its potential application[D]. Jinan: Shandong University, 2020.
|
[68] |
SHIKHA O K, BURGESS C M, D GERALDINE, et al. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei[J]. PLoS One,2018,13(1):1−20.
|
[69] |
林杨, 布丽根·加冷别克, 孙建, 等. 乳酸菌的筛选及高产酸菌株的常压室温等离子体诱变选育[J]. 食品与发酵工业,2021,47(12):176−181. [LIN Y, BULIGEN B, SUN J, et al. Screening of lactic acid bacteria and breeding of high acid producing strain by ARTP mutation[J]. Food and Fermentation Industries,2021,47(12):176−181.
LINY, BULIGEN·B, SUN J, et al. Screening of lactic acid bacteria and breeding of high acid producing strain by ARTP mutation[J]. Food and Fermentation Industries, 2021, 47(12): 176-181.
|
1. |
方诗会,熊尧,张召,林俊芳,陈涛,郭丽琼. 副干酪乳杆菌Lp.R3的高密度培养工艺优化. 食品工业科技. 2025(09): 196-205 .
![]() | |
2. |
郑超,侯信哲,陈天花,刘彩丽,朱宗河,徐雅芫,周可金,张付贵. 乳酸菌在蔬菜发酵中的作用机制研究进展. 中国调味品. 2024(08): 205-210 .
![]() | |
3. |
王超凡,王慧慧,胡世伟,赵华,张朝正. 鼠李糖乳杆菌TCCC 10035的培养条件优化. 饲料研究. 2024(22): 116-122 .
![]() | |
4. |
蒋大成,郝沛研,程文,李潘贤,方曙光. 发酵食品中乳酸菌的作用探讨. 食品安全导刊. 2023(07): 99-101 .
![]() | |
5. |
谢佳琪,赵洁. 发酵乳中乳酸菌菌株间互作机制及其对产品特性影响的研究进展. 食品工业科技. 2023(17): 1-7 .
![]() | |
6. |
刘福东,桑跃,葛绍阳. 乳双歧杆菌BL-99高密度发酵培养工艺的优化研究. 中国奶牛. 2023(12): 32-36 .
![]() |