XU Xiaoyu, LI Tian, SHI Xuewei, et al. Screening, Identification and Optimization of Biocontrol Conditions for Antagonistic Bacteria of Aspergillus niger[J]. Science and Technology of Food Industry, 2022, 43(13): 132−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090271.
Citation: XU Xiaoyu, LI Tian, SHI Xuewei, et al. Screening, Identification and Optimization of Biocontrol Conditions for Antagonistic Bacteria of Aspergillus niger[J]. Science and Technology of Food Industry, 2022, 43(13): 132−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090271.

Screening, Identification and Optimization of Biocontrol Conditions for Antagonistic Bacteria of Aspergillus niger

More Information
  • Received Date: September 22, 2021
  • Available Online: April 30, 2022
  • In order to screen for antagonistic bacteria with good inhibitory effect on black fungal disease in grape storage, in this study, strains with strong inhibitory effect on Aspergillus niger, which causes mycorrhizal lesions in grapes after harvest, were screened from soil by plate dilution method, identified using a combination of morphology and molecular biology, and optimized their growth and control conditions using single-factor and orthogonal tests. The results showed that 14 strains of bacteria with inhibitory effect on A.niger were isolated from vineyard soil in Xinjiang, among which, strain G8 had the best inhibitory effect on A.niger. The bacterium G8, which can antagonise A. niger, was identified as Bacillus siamensis. The optimum conditions for Bacillus siamensis G8 were: 3% inoculum, initial pH7, incubation temperature of 33 ℃, shaking speed of 160 r/min, and incubation time of 33 h. The inhibition diameter reached 28.79 mm under these conditions. The results of the study will provide theoretical basis for the application of antagonistic bacteria in the biological control of A. niger after grape harvest.
  • [1]
    杜蕙, 王春明, 郭建国, 等. 葡萄生单轴霉菌对葡萄几种防御酶活性的影响[J]. 江苏农业科学,2019,47(15):151−154. [DU H, WANG C M, GUO J G, et al. Effects of Plasmopara viticola on activity of defense-related enzymesi in grape[J]. Jiangsu Agricultural Sciences,2019,47(15):151−154.

    DU H, WANG C M, GUO J G, et al. Effects of Plasmopara viticola on activity of defense-related enzymesi in grape[J]. Jiangsu Agricultural Sciences, 2019, 47(15): 151-4.
    [2]
    TOURNAS V H, KATSOUDAS E. Mould and yeast flora in fresh berries, grapes and citrus fruits[J]. International Journal of Food Microbiology,2005,105(1):11−17. doi: 10.1016/j.ijfoodmicro.2005.05.002
    [3]
    ZHOU Q, FU M, XU M, et al. Application of antagonist Bacillus amyloliquefaciens NCPSJ7 against Botrytis cinerea in postharvest Red Globe grapes[J]. Food Science & Nutrition,2020,8(3):1499−1508.
    [4]
    张迪. 葡萄灰霉病拮抗酵母菌的筛选及产挥发性抑菌物质特性研究[D]. 石河子: 石河子大学, 2018

    ZHANG D. Screening and antibiotic characterization of volatile organic compounds produced by antagonistic yeasts against grape grey mold[D]. Shihezi: Shihezi University, 2018.
    [5]
    李丽梅, 刘霞, 李喜宏, 等. 常温下黑曲霉对刺伤红提葡萄的致病规律研究及拮抗菌筛选[J]. 食品研究与开发,2020,41(15):35−39. [LI L M, LIU X, LI X H, et al. Study on the wound pathogenicity of Aspergillus niger and its antagonistic bacteria screening of postharvest red globe grapes at room temperature[J]. Food Research and Development,2020,41(15):35−39. doi: 10.12161/j.issn.1005-6521.2020.15.007

    LI L M, LIU X, LI X H, et al. Study on the wound pathogenicity of Aspergillus niger and its antagonistic bacteria screening of postharvest red globe grapes at room temperature[J]. Food Research and Development, 2020, 41(15): 35-9. doi: 10.12161/j.issn.1005-6521.2020.15.007
    [6]
    SCHWEIZER G, HAIDER M B, BARROSO G V, et al. Population genomics of the maize pathogen ustilago maydis: Demographic history and role of virulence clusters in adaptation[J]. Genome Biology and Evolution,2021,13(5):e73. doi: 10.1093/gbe/evab073
    [7]
    RYPIEN K L, WARD J R, AZAM F. Antagonistic interactions among coral-associated bacteria[J]. Environmental Microbiology,2010,12(1):28−39. doi: 10.1111/j.1462-2920.2009.02027.x
    [8]
    AIYAR P, SCHAEME D, GARCÍA-ALTARES M, et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells[J]. Nature Communications,2017,8(1):1756. doi: 10.1038/s41467-017-01547-8
    [9]
    GUO J, FANG W, LU H, et al. Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii[J]. Postharvest Biology and Technology,2014,88:72−78. doi: 10.1016/j.postharvbio.2013.09.008
    [10]
    WEI Y, XU M, WU H, et al. Defense response of cherry tomato at different maturity stages to combined treatment of hot air and Cryptococcus laurentii[J]. Postharvest Biology and Technology,2016,117:177−186. doi: 10.1016/j.postharvbio.2016.03.001
    [11]
    马英元, 栾非时, 马鸿艳, 等. 甜瓜白粉病内生拮抗细菌的筛选鉴定及其防治效果的研究[J]. 植物保护,2011,37(2):25−30. [MA Y Y, LUAN F S, MA H Y, et al. Screening, identification and control efficacy of melon endophytic antagonistic bacteria against Sphaerotheca fuliginea[J]. Plant Protection,2011,37(2):25−30. doi: 10.3969/j.issn.0529-1542.2011.02.005

    MA Y Y, LUAN F S, MA H Y, et al. Screening, identification and control efficacy of melon endophytic antagonistic bacteria against Sphaerotheca fuliginea[J]. Plant Protection, 2011, 37(2): 25-30. doi: 10.3969/j.issn.0529-1542.2011.02.005
    [12]
    夏俊芳, 郑素慧, 翟少华, 等. 一株拮抗酿酒葡萄灰霉病的枯草芽孢杆菌T3筛选、鉴定及抑菌分析[J]. 食品工业科技,2020,41(23):99−105,113. [XIA J F, ZHENG S H, ZHAI S H, et al. Screening and ldentification of antagonistic Bacillus subtilis T3 against wine grape gray mold and analysis of its antimicrobial activity[J]. Science and Technology of Food Industry,2020,41(23):99−105,113.

    XIA J F, ZEHNG S H, ZHAI S H, et al. Screening and ldentification of antagonistic Bacillus subtilis T3 against wine grape gray mold and analysis of its antimicrobial activity[J]. Science and Technology of Food Industry, 2020, 41(23): 99-105, 13.
    [13]
    赵中辉. 果树高产技术及病虫害防治要点探究[J]. 南方农业,2021,15(18):26−27. [ZHAO Z H. Research on high yield techniques and pest control of fruit trees[J]. South China Agriculture,2021,15(18):26−27.

    ZHAO Z H. Research on high yield techniques and pest control of fruit trees[J]. South China Agriculture, 2021, 15(18): 26-7.
    [14]
    KUSSTATSCHER P, CERNAVA T, ABDELFATTAH A, et al. Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables[J]. Fems Microbiology Ecology,2020,96(7):119−130. doi: 10.1093/femsec/fiaa119
    [15]
    沙月霞, 王国珍, 陈慧娟. 宁夏主要优特农产品贮藏病害发生种类的初步研究[J]. 宁夏农林科技,2007(1):12−14. [SHA Y X, WANG G Z, CHEN H J. Preliminary study on the occurrence types of storage diseases of main premium agricultural products in Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2007(1):12−14. doi: 10.3969/j.issn.1002-204X.2007.01.004

    SHA Y X, WANG G Z, CHEN H J. Preliminary study on the occurrence types of storage diseases of main premium agricultural products in Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2007(01): 12-14. doi: 10.3969/j.issn.1002-204X.2007.01.004
    [16]
    赵月. 拮抗酵母对番茄果实灰霉病的抑制作用研究[D]. 天津: 天津科技大学, 2017.

    ZHAO Y. Study on inhibition of the antagonistic yeast on gray mold of postharvest tomato fruit[D]. Tianjin: Tianjin University of Science & Technology, 2017.
    [17]
    周倩, 冯肖, 纪淑娟, 等. 蓝莓果实常温贮藏过程中表面病原真菌的分离与鉴定[J]. 中国食品学报,2020,20(2):271−279. [ZHOU Q, FENG X, JI S J, et al. Isolation and identification of surface pathogenic fungi for blueberry during storage at room temperature[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(2):271−279.

    ZHOU Q, FENG X, JI S J, et al. Isolation and identification of surface pathogenic fungi for blueberry during storage at room temperature[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(2): 271-279.
    [18]
    东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 166−171.

    DONG X Z, CAI M Y. Common bacterial system identification manual[M]. Beijing: Science Press, 2001: 166−171.
    [19]
    赵斌, 何绍江. 微生物学实验[M]. 北京: 科学出版社, 2002: 26−120.

    ZHAO B, HE S J. Microbiology experiment[M]. Beijing: Science Press, 2002: 26−120.
    [20]
    詹艺舒, 李婕, 褚秀丹, 等. 一株真菌拮抗细菌Z21的筛选与鉴定及其发酵条件优化[J]. 微生物学通报,2020,47(5):1503−1514. [ZHAN Y S, LI J, CHU X D, et al. Screen, identification and fermentation optimization of an antifungal bacterium Z21[J]. Microbiology China,2020,47(5):1503−1514.

    ZHAN Y S, LI J, CHU X D, et al. Screen, identification and fermentation optimization of an antifungal bacterium Z21[J]. Microbiology China, 2020, 47(5): 1503-1514.
    [21]
    YANG Q, WANG H, ZHANG H, et al. Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus[J]. Postharvest Biology and Technology,2017,126:15−22. doi: 10.1016/j.postharvbio.2016.11.015
    [22]
    许本宏, 林俊芳, 叶志伟, 等. 带鱼肠道中芽孢杆菌的分离鉴定及其发酵液抗菌性质研究[J]. 水产科学,2018,37(2):193−200. [XU B H, LIN J F, YE Z W, et al. lsolation and identification of bacillus from gastrointestinal tract of hairtail (Trichiurus haumela) and antibacterial characteristics of their fermented liquids[J]. Fisheries Science,2018,37(2):193−200.

    XU B H, LIN J F, YE Z W, et al. lsolation and identification of bacillus from gastrointestinal tract of hairtail (Trichiurus haumela) and antibacterial characteristics of their fermented liquids[J]. Fisheries Science, 2018, 37(2): 193-200.
    [23]
    沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学,2022,55(2):320−328. [SHA Y X, HUANG Z Y, MA R. Control efficacy of Pseudomonas alcaliphila strain Ej2 against rice blast and its effect on endogenous hormones in rice[J]. Scientia Agricultura Sinica,2022,55(2):320−328. doi: 10.3864/j.issn.0578-1752.2022.02.007

    SHA Y X, HUANG Z Y, MA R. Control efficacy of Pseudomonas alcaliphila strain ej2 against rice blast and its effect on endogenous hormones in rice[J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328. doi: 10.3864/j.issn.0578-1752.2022.02.007
    [24]
    叶婵, 周南, 蒋选利. 蓝莓根腐病生防细菌的筛选与鉴定[J]. 中国森林病虫,2018,37(5):11−15. [YE C, ZHOU N, JIANG X L. Screening and identification of biocontrol bacteria for blueberry root rot[J]. Forest Pest and Disease,2018,37(5):11−15. doi: 10.3969/j.issn.1671-0886.2018.05.003

    YE C, ZHOU N, JIANG X L. Screening and identification of biocontrol bacteria for blueberry root rot[J]. Forest Pest and Disease, 2018, 37(5): 11-15. doi: 10.3969/j.issn.1671-0886.2018.05.003
    [25]
    JENAL U, FUCHS T. An essential protease involved in bacterial cell-cycle control[J]. The EMBO Journal,1998,17(19):5658−5669. doi: 10.1093/emboj/17.19.5658
    [26]
    李智琪. 清香酒醅中高自溶度乳酸菌的分离鉴定及其自溶酶的研究[D]. 临汾: 山西师范大学, 2020.

    LI Z Q. Isolation and identification of iactic acid bacteria with high autolysis from fermented grains of light-flavor baijiu and research on autolysin[D]. Linfen: Shanxi Normal University, 2020.
    [27]
    马斌. 卵转铁蛋白抗菌肽的制备及纳米粒应用研究[D]. 武汉: 华中农业大学, 2021.

    MA B. Preparation of ovotransferrin a ntimicrobial peptide and application of nanoparticles[D]. Wuhan: Huazhong Agricultural University, 2021.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (368) PDF downloads (50) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return