ZHOU Xueqin, LIU Liangzhong. Screening of Bacillus subtilis and Optimization of Liquid Fermentation Conditions for Nattokinase Production[J]. Science and Technology of Food Industry, 2022, 43(7): 163−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090250.
Citation: ZHOU Xueqin, LIU Liangzhong. Screening of Bacillus subtilis and Optimization of Liquid Fermentation Conditions for Nattokinase Production[J]. Science and Technology of Food Industry, 2022, 43(7): 163−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090250.

Screening of Bacillus subtilis and Optimization of Liquid Fermentation Conditions for Nattokinase Production

More Information
  • Received Date: September 22, 2021
  • Available Online: February 11, 2022
  • In order to improve the yield of nattokinase and promote its industrial production and application, Bacillus subtilis was isolated from fresh natto from different producing areas, and the strain with larger ratio of hydrolysis circle to colony was selected through preliminary screening of colony morphology and re-screening of casein plate, and the nattokinase activity in its fermentation broth was measured, and a strain X3 with relatively high enzyme activity was selected. X3 strain was identified as Bacillus subtilis by systematic 16S rDNA sequencing and phylogenetic tree comparison. On the basis of single factor experiment, response surface methodology was designed to optimize the liquid fermentation conditions of nattokinase in shake flask, and the optimum conditions for liquid fermentation of X3 strain were determined as follows: temperature 34 ℃, initial pH6.5, inoculation amount 2%, bottling amount 20%, fermentation time 30 h. Under these conditions, the enzyme activity of nattokinase produced by fermentation was 393.095 U/mL, which was higher than that of nattokinase purchased. This experiment laid a certain foundation for the subsequent industrial production.
  • [1]
    ZHOU X Q, LIU L Z, ZENG X R. Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: A review[J/OL]. Food Structure, 2021. https://doi.org/10.1016/J.FOOSTR.2021.100219.
    [2]
    SUMI H, HAMADA H, TSUSHIMA H, et al. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet[J]. Experientia,1987,43(10):1110. doi: 10.1007/BF01956052
    [3]
    MILNER M, MAKISE K. Natto and its active ingredient nattokinase: A potent and safe thrombolytic agent[J]. Alternative & Complementary Therapies,2002,8(3):157−164.
    [4]
    WENG Y Q, YAO J, SPARKS S, et al. Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease[J]. International Journal of Molecular Sciences,2017,18(3):523. doi: 10.3390/ijms18030523
    [5]
    CHANDRASEKARAN S D, VAITHILINGAM M, SHANKER R, et al. Exploring the in vitro thrombolytic activity of nattokinase from a new strain Pseudomonas aeruginosa CMSS[J]. Jundishapur Journal of Microbiology,2015,8(10):e23567.
    [6]
    VAITHILINGAM M, CHANDRASEKARAN S D, GUPTA S, et al. Extraction of nattokinase enzyme from Bacillus cereus isolated from rust[J]. National Academy Science Letters,2016,39(4):263−267. doi: 10.1007/s40009-016-0476-7
    [7]
    FUJITA M, ITO Y, HONG K. Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin[J]. Fibrinolysis,1995,9(3):157−164. doi: 10.1016/S0268-9499(95)80005-0
    [8]
    YUKI Y, NAKAGAWA T, FUJITA M, et al. A sandwich enzyme-linked immunosorbent assay for nattokinase[J]. Bioscience, Biotechnology, and Biochemistry,1994,58(2):366−370. doi: 10.1271/bbb.58.366
    [9]
    SUMI H, HAMADA H, NAKANISHI K, et al. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase[J]. ActaHaematologica,1990,84(3):139−143.
    [10]
    URANO T, IHARA H, UMEMURA K, et al. The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1[J]. Journal of Biological Chemistry,2001,276(27):24690−24696. doi: 10.1074/jbc.M101751200
    [11]
    CAI D, WEI X, QIU Y, et al. High-level expression of nattoki-nase in Bacillus licheniformis by manipulating signal peptide and signal peptidase[J]. Journal of Applied Microbiology,2016,121(3):704. doi: 10.1111/jam.13175
    [12]
    YOO H J, KIM M, KIM M, et al. The effects of natokinase supplementation on collagen-epinephrine closure time, pro-thrombin time and activated partial thromboplastin time in nondiabetic and hypercholesterolemic subjects[J]. Food Funct,2019,10(5):2888−2893. doi: 10.1039/C8FO02324G
    [13]
    杨敏, 梅余霞, 梁运祥. 纳豆激酶粗提液抗血栓作用的研究[J]. 食品科技,2013,38(9):197−200. [YANG M, MEI Y X, LIANG Y X. Study on antithrombotic effect of nattokinase crude extract[J]. Food Science and Technology,2013,38(9):197−200.
    [14]
    KUROSAWA Y, NIRENGI S, HOMMA T, et al. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles[J]. Scientific Reports,2015,5:11601. doi: 10.1038/srep11601
    [15]
    JANG J Y, KIM T S, CAI J, et al. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation[J]. Laboratory Animal Research,2013,29(4):221−225. doi: 10.5625/lar.2013.29.4.221
    [16]
    JAYACHANDRAN M, XU B. An insight into the health benefits of fermented soy products[J]. Food Chemistry,2019,271(JAN.15):362−371.
    [17]
    TAKABAYASHI T, MOTO Y, SAKASHITA M, et al. Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus[J]. Allergology International,2017,66(4):594−602. doi: 10.1016/j.alit.2017.03.007
    [18]
    姚明静,杨杨,范婧,等.纳豆激酶的微生物生产及其生理功能的研究进展[J/OL].食品工业科技:1−19[2021-10-28]. https://doi.org/10.13386/j.issn1002-0306.2021070016.

    YAO M J, YANG Y, FANG J, et al. Research progress on microbial production and physiological function of nattokinase[J/OL]. Science and Technology of Food Industry, 1−19[2021-10-28]. https://doi.org/10.13386/j.issn1002-0306.2021070016.
    [19]
    巩涛, 魏传军, 安明理, 等. 1株纳豆激酶高产菌株的分离·筛选与复合诱变研究[J]. 安徽农业科学,2021,49(15):159−161. [GONG T, WEI C J, AN M L, et al. Isolation, screening and compound mutagenesis of a nattokinase-producing strain[J]. Journal of Anhui Agricultural Sciences,2021,49(15):159−161. doi: 10.3969/j.issn.0517-6611.2021.15.042
    [20]
    满丽莉, 向殿军. 传统发酵豆制品中纳豆激酶产生菌的筛选及发酵培养基的优化[J]. 中国调味品,2019,44(6):44−49. [MAN L L, XIANG D J. Screening of nattokinase producing bacteria from traditional fermented bean products and optimization of fermentation medium[J]. China Condiment,2019,44(6):44−49. doi: 10.3969/j.issn.1000-9973.2019.06.010
    [21]
    于江淼, 王家林, 张海粟. 黑纳豆固态发酵工艺优化的研究[J]. 中国调味品,2020,45(3):101−106. [YU J M, WANG J L, ZHANG H L. Study on optimization of solid-state fermentation process of black natto[J]. China Condiment,2020,45(3):101−106. doi: 10.3969/j.issn.1000-9973.2020.03.022
    [22]
    耿晓然, 徐慧, 卢鑫, 等. 响应面法优化纳豆混合发酵工艺的研究[J]. 河北农业大学学报,2020,43(1):96−103. [GENG X H, XU H, LU X, et al. Optimization of mixed fermentation of natto with response surface methodology[J]. Journal of Hebei Agricultural University,2020,43(1):96−103.
    [23]
    吴昱含, 郭大鹏, 李帅鹏, 等. 液态发酵豆粕制备纳豆激酶方法的优化[J]. 生物资源,2017,39(4):308−313. [WU Y H, GUO D P, LI S P, et al. Optimization of preparation method of nattokinase from fermented soybean meal[J]. Biotic Resources,2017,39(4):308−313.
    [24]
    陈丽娟, 沙长青, 奚新伟, 等. 国外纳豆激酶的开发现状[J]. 生物技术,2003(3):44−45. [CHEN L J, SHA C Q, XI X W, et al. Development status of nattokinase abroad[J]. Biotechnology,2003(3):44−45. doi: 10.3969/j.issn.1004-311X.2003.03.030
    [25]
    PAGNONCELLI M G B, FERNANDES M J, RODRIGUES C, et al. Nattokinases[M]. Current Developments in Biotechnology and Bioengineering, 2017: 509−526.
    [26]
    吴燕, 梁向峰, 刘会洲, 等. 纳豆激酶分批补料发酵的研究[J]. 食品与发酵工业,2018,44(1):126−132. [WU Y, LIANG X F, LIU H Z, et al. Study on fed-batch fermentation of nattokinase[J]. Food and Fermentation Industries,2018,44(1):126−132.
    [27]
    OZAWA K, YAGU-UCLI K, YAMANAKA K, et al. Antagonistic effects of Bscillus natto and Steptococcus faecalis on growth of Candida albicans[J]. Microbiol Immunos,1979,23(12):1147−1156. doi: 10.1111/j.1348-0421.1979.tb00547.x
    [28]
    郑丹妮, 王梦颖, 胡艺涵, 等. 双菌混合发酵纳豆工艺优化[J]. 食品与机械,2020,36(12):183−188. [ZHENG D N, WANG M Y, HU Y H, et al. Optimization of natto fermentation process with double bacteria[J]. Food & Machinery,2020,36(12):183−188.
    [29]
    程云. 纳豆激酶的酶学特性及其微胶囊的制备研究[D]. 哈尔滨: 哈尔滨工业大学, 2015

    CHENG Y. Studies on enzymatic properties of nattokinase and preparation of microcapsules[D]. Harbin: Harbin Institute of Technology, 2015.
    [30]
    庞远祥, 谢远红, 金君华, 等. 低嘌呤、高纳豆激酶活性枯草芽孢杆菌SH21筛选及发酵条件优化[J]. 食品与发酵工业,2021,47(11):194−199. [PANG Y X, XIE Y H, JIN J H, et al. Isolation and optimization of Bacillus subtilis SH21 for low purine and high nattokinase activity[J]. Food and Fermentation Industries,2021,47(11):194−199.
  • Cited by

    Periodical cited type(9)

    1. 文舒瑶,郭宝松,梁悦琪,卫晓涵,陈映羲,纪超凡,张素芳. 水开菲尔粒中产酸菌株的筛选及其在无醇发酵麦芽汁中的应用. 食品与发酵工业. 2025(08): 60-67+76 .
    2. 严德林,黄雷,邱婧,陈世浪,梅芷晴,张凯旋,杨存义,高向阳. PB试验结合BBD响应面法优化纳豆γ-聚谷氨酸发酵条件. 食品工业科技. 2024(01): 208-215 . 本站查看
    3. 叶延欣,秦鹏,别鹏坤,张书斌,李蕾蕾,陈艳艳,张道雷. 纳豆芽孢杆菌Bacillus natto NK4液态发酵产纳豆激酶的工艺优化. 河南城建学院学报. 2024(02): 103-108+132 .
    4. 叶丽莎,高梦迪,程婉冰,庞凤萍,邓立高,李坚斌. 枯草芽孢杆菌产纳豆激酶的复合诱变选育及发酵条件优化. 应用化工. 2024(11): 2562-2568 .
    5. 王淼霜,仝艳军,蒋雨桥,杨瑞金. 苦荞对发酵豆乳纳豆激酶活力、风味及抗氧化活性的影响. 食品与生物技术学报. 2023(07): 62-71 .
    6. 王刚,王芝玉,安荣荣,滕玉婷,古梅,刘霞,高慧娟,董瑞丽. 固态发酵条件对纳豆激酶活性的影响及发酵条件的优化. 粮食加工. 2023(05): 33-37 .
    7. 陈俊煌. 纳豆激酶高产菌株的选育及其酶学活性研究. 生物化工. 2023(05): 152-155+159 .
    8. 高梦迪,苏钱琙,李杰,樊学晶,王朝阳,邓立高,李坚斌. 纳豆激酶微生物生产研究进展. 大豆科学. 2022(06): 740-746 .
    9. 余薇,邓小华,刘婷,潘笃杰,郑巧双. 一株益生型枯草芽孢杆菌液态发酵条件优化. 现代食品. 2022(20): 84-86 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (374) PDF downloads (55) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return