SUN Huifeng, ZHU Junyi, GUO Lidong, et al. Research Progress on Biotransformation of Lactic Acid Bacteria on Active Ingredients from Homologous Plants of Medicine and Food[J]. Science and Technology of Food Industry, 2022, 43(7): 474−481. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090227.
Citation: SUN Huifeng, ZHU Junyi, GUO Lidong, et al. Research Progress on Biotransformation of Lactic Acid Bacteria on Active Ingredients from Homologous Plants of Medicine and Food[J]. Science and Technology of Food Industry, 2022, 43(7): 474−481. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090227.

Research Progress on Biotransformation of Lactic Acid Bacteria on Active Ingredients from Homologous Plants of Medicine and Food

More Information
  • Received Date: September 17, 2021
  • Available Online: February 09, 2022
  • People’s awareness about nutrition and health is increasing in the world. Plant-based foods, especially medicine-food homologous plants, have been received great attention in recent years, and the main active substances included saponins, flavonoids, polysaccharides and volatile oils. As a starter culture in the traditional and modern fermentation industry, lactic acid bacteria are inherently beneficial microorganisms in the human intestinal tract, and exhibit good biotransformation effects and health benefits. Therefore, lactic acid bacteria with high-safety are selected to ferment and transform medicine-food homologous plant to produce more active substances and improve functional efficacy, which becomes one of the research hotspots. In this paper, the biotransformation effect of lactic acid bacteria on the saponins, flavonoids and polysaccharides in medicine-food homologous plants are mainly discussed and reviewed from the aspects of biotransformation effect and mechanism. This review would provide ideas for the research and product development of medicine-food homologous plants biotransformed by lactic acid bacteria.
  • [1]
    ZAFAR H, SAIER M H J. Comparative genomics of the transport proteins of ten Lactobacillus strains[J]. Genes(Basel),2020,21(10):1234−1241.
    [2]
    CHEON M J, LIM S M, LEE N K, et al. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods[J]. International Journal of Molecular Sciences,2020,21(4):1227−1233. doi: 10.3390/ijms21041227
    [3]
    郑苗, 何佳, 吕丹丹, 等. 复合乳酸菌发酵怀山药工艺及其抗氧化活性[J]. 中国酿造,2018,37(2):106−110. [ZHENG M, HE J, LV D D. Optimization of fermentation process of Chinese yam by compound lactic acid bacteria and its antioxidant activity[J]. China Brewing,2018,37(2):106−110. doi: 10.11882/j.issn.0254-5071.2018.02.022
    [4]
    郑苗, 何佳, 吕丹丹, 等. 怀山药乳酸菌饮品发酵工艺及其活性成分的研究[J]. 食品科技,2018,43(7):104−110. [ZHENG M, HE J, LV D D, et al. Study on fermentation technology and active components of Chinese yam Lactobacillus beverage[J]. Food Science and Technology,2018,43(7):104−110.
    [5]
    YOU Y, LIU Y L, AI Z Y, et al. Lactobacillus fermentum KP-3-fermented ginseng ameliorates alcohol-induced liver disease in C57BL/6N mice through the AMPK and MAPK pathways[J]. Food & Function,2020,11(11):9801−9809.
    [6]
    QU Q, YANG F, ZHAO C, et al. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea[J]. Journal of Ethnopharmacology,2021,267:113594. doi: 10.1016/j.jep.2020.113594
    [7]
    JANG S H, PARK J, KIM S H, et al. Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model[J]. Chi-nese Journal of Natural Medicines,2017,15(3):192−201. doi: 10.1016/S1875-5364(17)30035-3
    [8]
    JUNG J, JANG H J, EOM S J, et al. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: Ginsenoside conversion and antioxidant effects[J]. Journal of Ginseng Research,2019,43(1):20−26. doi: 10.1016/j.jgr.2017.07.004
    [9]
    陈艳艳, 于波, 潘黛安, 等. 乳杆菌发酵葛根水提液工艺研究及其解酒功效探讨[J]. 中国酿造,2020,39(8):182−186. [CHEN Y Y, YU B, PAN D A, et al. Fermentation technology of water extract of Pueraria lobata by Lactobacillus and its alleviating hang-over effect[J]. China Brewing,2020,39(8):182−186. doi: 10.11882/j.issn.0254-5071.2020.08.034
    [10]
    国立东, 李秀萍, 张焕, 等. 一株酸面团源乳酸菌的益生特性及其对刺五加叶总皂苷的影响[J]. 食品工业科技,2021,42(14):121−126. [GUO L D, LI X P, ZHANG H, et al. The probiotic properties of a strain of sourdough-derived lactic acid bacteria and its effect on the total saponins of Acanthopanax senticosus lea-ves[J]. Science and Technology of Food Industry,2021,42(14):121−126.
    [11]
    苏能能, 关倩倩, 彭珍, 等. 乳酸菌发酵对桑葚浆品质及抑菌性能的影响[J]. 食品与发酵工业,2018,44(9):117−124. [SU N N, GUAN Q Q, PENG Z, et al. Effects of lactic acid bacteria on quality and antibacterial properties of mulberry puree[J]. Food and Fermentation Industries,2018,44(9):117−124.
    [12]
    DEGRAIN A, MANHIVI V, REMIZE F, et al. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in African nightshade[J]. Microorganisms,2020,30(9):1324.
    [13]
    GONG W, HUANG Y, JI A, et al. Optimisation of saponin extraction conditions with Camellia sinensis var. assamica seed and its application for a natural detergent[J]. Journal of the Science of Food and Agriculture,2018,98(6):2312−2319. doi: 10.1002/jsfa.8721
    [14]
    HURJ S, LEE S Y, KIM Y C, et al. Effect of fermentation on the antioxidant activity in plant-based foods[J]. Food Chemistry,2014,160:346−356. doi: 10.1016/j.foodchem.2014.03.112
    [15]
    QIAO H, ZHANG X, SHI H, et al. Assessment of the physicochemical properties and bacterial composition of Lactobacillus plantarum and Enterococcus faecium-fermentedAstragalus membranaceus using single molecule, real-time sequencing technology[J]. Scientific Reports,2018,8(1):11862. doi: 10.1038/s41598-018-30288-x
    [16]
    马利华. 乳酸菌发酵对槐花营养及抗氧化性的影响[J]. 食品工业科技,2009,30(5):200−202,207. [MA L H. Effect of Lac-tobacillus fermentation on nutrients and function of Sophra japonica[J]. Science and Technology of Food Industry,2009,30(5):200−202,207.
    [17]
    王楠. 枳椇乳酸菌发酵饮料对小鼠酒精肝损伤的保护作用[D]. 杨凌: 西北农林科技大学, 2016.

    WANG N. Effect of lactic acid-fermented beverage from peduncles of Hovenia dulcis on alcohol-induced liver damage in mice[D]. Yangling: Northwest A&F University, 2016.
    [18]
    刘梦培, 李佳, 纵伟, 等. 乳酸菌和酵母菌发酵对杜仲雄花茶汁品质及抗氧化活性的影响[J]. 中国酿造,2020,39(5):71−76. [LIU M P, LI J, ZONG W, et al. Effects of lactic acid bacteria and yeast fermentation on the quality and antioxidant activity of male Eucommia ulmoides flower tea juice[J]. China Brewing,2020,39(5):71−76. doi: 10.11882/j.issn.0254-5071.2020.05.014
    [19]
    王惠, 赵国群, 冯风琴, 等. 发酵红树莓汁乳酸菌的筛选及抗氧化活性研究[J]. 中国酿造,2020,38(5):105−109. [WANG H, ZHAO G Q, FENG F Q, et al. Screening of lactic acid bacteria and antioxidant activity of fermented red raspberry juice[J]. China Brewing,2020,38(5):105−109. doi: 10.11882/j.issn.0254-5071.2020.05.020
    [20]
    黄振勇, 张娥珍, 淡明, 等. 乳酸菌发酵对铁皮石斛活性物质含量及其抗氧化能力的影响[J]. 热带作物学报,2020,41(3):572−578. [HUANG Z Y, ZHANG E Z, DAN M, et al. Effects of Lactobacillus fermentation on active substance and antioxidant activity of Dendrobium candidum[J]. Chinese Journal of Tropical Crops,2020,41(3):572−578. doi: 10.3969/j.issn.1000-2561.2020.03.021
    [21]
    LIU Y, CHENG H, LIU H, et al. Fermentation by multiple bacterial strains improves the production of bioactive compounds and antioxidant activity of Goji juice[J]. Molecules,2019,24(19):3519. doi: 10.3390/molecules24193519
    [22]
    KWAW E, MA Y, TCHABO W, et al. Effect of Lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice[J]. Food Chemistry,2018,250:148−154. doi: 10.1016/j.foodchem.2018.01.009
    [23]
    YE J, HUANG L, TEREFE N S, et al. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria[J]. Food Chemistry,2019,286:616−623. doi: 10.1016/j.foodchem.2019.02.030
    [24]
    HECTOR R, JOSE A C, JOSE M L, et al. Food phenolics and lactic acid bacteria[J]. International Journal of Food Microbiology,2009,132:79−90. doi: 10.1016/j.ijfoodmicro.2009.03.025
    [25]
    LIU W S, YANG CY, FANG T J. Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of β-glucosidase activity for bioconversion of isoflavones in soymilk[J]. Journal of Microbiological Methods,2018,148:145−150. doi: 10.1016/j.mimet.2018.04.006
    [26]
    GAYA P, PEIROTEN A, LANDETE J M. Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods[J]. Applied Microbiology and Biotechnology,2020,104(11):4903−4913. doi: 10.1007/s00253-020-10588-x
    [27]
    孙莹莹, 刘玥, 陈可冀. 人参皂苷的心血管药理效应: 进展与思考[J]. 中国科学(生命科学),2016,46:771−778. [SUN Y Y, LIU Y, CHEN K J. Roles and mechanisms of ginsenoside on cardiovascular diseases: Progress and perspectives[J]. Scientia Sinica (Vitae),2016,46:771−778. doi: 10.1360/05scls-2015-0279
    [28]
    DEL H J, HERRERA T, FORNARI T, et al. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities[J]. Journal of Functional Foods,2018,40:484−497. doi: 10.1016/j.jff.2017.11.032
    [29]
    BAI L, GAO J, WEI F, et al. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes[J]. Frontiers in Pharmacology,2018,5(9):423.
    [30]
    HARALAMPIDIS K, TROJANOWSKA M, OSBOURN A E. Biosynthesis of triterpenoid saponins in plants[J]. Advances in Biochemical Engineering/Biotechnology,2002,75:31−49.
    [31]
    屈青松, 林峰, 赵崇研, 等. 发酵乳杆菌发酵人参工艺优化及人参皂苷抗氧化活性测定[J]. 中成药,2020,42(10):2738−2743. [QU Q S, LIN F, ZHAO C Y, et al. Lactobacillus fermentum fermentation process optimization of ginseng and determination of ginsenoside antioxidant activity[J]. Chinese Traditional Patent Medicine,2020,42(10):2738−2743. doi: 10.3969/j.issn.1001-1528.2020.10.038
    [32]
    陈旸, 王义, 孙亮, 等. 植物乳杆菌发酵转化人参皂苷的研究[J]. 中国中药杂志,2014,39(8):1435−1440. [CHEN Y, WANG Y, SUN L, et al. Study on fermentation and transformation of ginsenosides by Lactobacillus plantarum[J]. China Journal of Chinese Materia Medica,2014,39(8):1435−1440.
    [33]
    QUAN L H, PIAO J Y, MIN J W, et al. Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102[J]. Journal of Ginseng Research,2011,35(3):344−351. doi: 10.5142/jgr.2011.35.3.344
    [34]
    KIM B H, LEE S Y, CHO H J, et al. pBiotransformation of Korean Panax ginseng by pectinex[J]. Biological and Pharmaceutical Bulletin,2006,29(12):2472−2478. doi: 10.1248/bpb.29.2472
    [35]
    BAE E A, KIM N Y, HAN M J, et al. Transformation of ginsenoside to compound K(IH-901) by lactic acid bacteria of human intestine[J]. Journal of Microbiology and Biotechnology,2003,13(1):9−14.
    [36]
    TANSAKUL P, SHIBUYA M, KUSHIRO T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. Federation of European Bioche-mical Societies,2006,580(22):5143−5149. doi: 10.1016/j.febslet.2006.08.044
    [37]
    刘江梅. 32种人参皂苷抑制肝癌细胞HepG2和SMMC7721增殖作用的构效关系[D]. 南昌: 南昌大学, 2021.

    LIU J M. Structure-activity relationship of 32 ginsenosides inhibiting the proliferation of hepatoma cells HepG2 and SMMC7721[D]. Nanchang: Nanchang University, 2021.
    [38]
    YAN X, FAN Y, WEI W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Re-search,2014,24(6):770−773. doi: 10.1038/cr.2014.28
    [39]
    SIDDIQI M Z, SRINIVASAN S, PARK H Y, et al. Exploration and characterization of novel glycoside hydrolases from the whole genome of Lactobacillus ginsenosidimutans and enriched production of minor ginsenoside Rg3(S) by a recombinant enzymatic process[J]. Biomolecules,2020,10(2):288. doi: 10.3390/biom10020288
    [40]
    ZHONG F L, DONG W W, WU S, et al. Biotransformation of gypenoside XVII to compound K by a recombinant β-glucosidase[J]. Biotechnology Techniques,2016,38(7):1187−1193.
    [41]
    CHI H, KIM D H, JI G E. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms[J]. Biological & Pharmaceutical Bulletin,2005,28(11):2102−2105.
    [42]
    WANG D D, KIM Y J, BAEK N I, et al. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications[J]. Journal of Ginseng Research,2021,45(1):48−57. doi: 10.1016/j.jgr.2019.11.004
    [43]
    陈明伟, 倪磊, 赵小革, 等. 人参皂苷Rg3对肿瘤血管生长调控因子蛋白表达抑制作用的研究[J]. 中国中药杂志,2005,30(5):357−360. [CHENG M W, NI L, ZHAO X G, et al. Ginsenoside Rg3 regulates tumor blood vessel growth study on the inhibitory effect of factor protein expression[J]. China Journal of Chinese Materia Medica,2005,30(5):357−360. doi: 10.3321/j.issn:1001-5302.2005.05.010
    [44]
    JIN Y, JUNG S Y, KIM Y J, et al. Microbial ketonization of ginsenosides F1 and C-K by Lactobacillus brevis[J]. Antonie Van Leeuwenhoek,2014,106(6):1215−1221. doi: 10.1007/s10482-014-0291-4
    [45]
    杨玲, 胡睿智, 夏嗣廷, 等. 植物多糖的功能性研究进展及其在动物生产中的应用[J]. 动物营养学报,2019,31(6):2534−2543. [YANG L, HU R Z, XIA S T, et al. Research progress on the functionality of plant polysaccharides and their application in animal production[J]. Chinese Journal of Animal Nutrition,2019,31(6):2534−2543.
    [46]
    边亚彬. 发酵黄芪多糖的制备及其对小鼠树突状细胞成熟相关信号通路的影响[D]. 北京: 中国农业科学院, 2017.

    BIAN Y B. Preparation of fermented Astragalus polysaccharides and its effect on the signaling pathway of murine bone marrow-derived dendritic cells maturation in vitro[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
    [47]
    包智影. 微生物法提取黄精多糖及其降脂功能的研究[D]. 哈尔滨: 东北林业大学, 2011.

    BAO Z Y. Preparation of Polygonatum sibiricum polysaccharide by microbial method and its lipid-lowering function[D]. Harbin: Northeast Forestry University, 2011.
    [48]
    WAN Y J, SHI H F, XU R, et al. Origin of hypoglycemic benefits of probiotic-fermented carrot pulp[J]. Journal of Agricultural and Food Chemistry,2019,67(3):895−904. doi: 10.1021/acs.jafc.8b06976
    [49]
    ZHANG Z H, FAN S T, HUANG D F, et al. Effect of Lactobacillus plantarum NCU116 fermentation on asparagus officinalis polysaccharide: Characterization, antioxidative, and immunoregulatory activities[J]. Journal of Agricultural and Food Chemistry,2018,66(41):10703−10711. doi: 10.1021/acs.jafc.8b03220
    [50]
    HUANG F, HONG R, ZHANG R, et al. Physicochemical and biological properties of longan pulp polysaccharides modified by Lactobacillus fermentum fermentation[J]. International Journal of Biological Macromolecules,2019,15(125):232−237.
    [51]
    梁海艳. 人参多糖对乳酸菌发酵特性的影响及应用[D]. 长春: 吉林大学, 2013.

    LIANG H Y. Effect of ginseng polysaccharide on the fermentation characteristics of lactic acid bacteria and its application[D]. Changchun: Jilin University, 2013.
    [52]
    YI Y J, LIM J M, GU S, et al. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity[J]. Journal of Microbiology,2017,55(4):296−303. doi: 10.1007/s12275-017-6642-x
    [53]
    王嘉悦. 枸杞多糖与益生菌粘附特性关系的研究[D]. 北京: 北京林业大学, 2019.

    WANG J Y. Study of adhesion characteristics of Lycium barbarum polysaccharides and the probiotics[D]. Beijing: Beijing Forestry University, 2019.
    [54]
    李汉荣. 益生菌生物转化紫薯花青素及应用研究[D]. 广州: 华南农业大学, 2017.

    LI H R. Probiotics biotransformation of purple sweet potato anthocyanins and the application in yogurt fermentation[D]. Guangzhou: South China Agricultural University, 2017.
    [55]
    CHEN C, LU Y, YU H, et al. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice[J]. Food Bioscience,2019,27:30−36. doi: 10.1016/j.fbio.2018.11.006
    [56]
    PALACHUM W, CHOORIT W, CHISTI Y. Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment[J]. Annals of Microbiology,2018,68:611−624. doi: 10.1007/s13213-018-1368-5
    [57]
    赵微, 张峰, 张和平, 等. 植物乳杆菌p-8转化亚油酸为共轭亚油酸的分析[J]. 食品科学,2021,42(10):94−103. [ZHAO W, ZHANG F, ZHANG H P, et al. Analysis of the transformation of linoleic acid into conjugated linoleic acid by Lactobacillus plantarum p-8[J]. Food Science,2021,42(10):94−103. doi: 10.7506/spkx1002-6630-20200225-273
    [58]
    YANG H S, HUH C K. Efficient conversion of conjugated linoleic acid c9, t11 by Lactobacillus fermentation from vegetable oil to generate fermented milk with high CLA content[J]. Korean Jour-nal of Food Preservation,2018,25(4):482−489. doi: 10.11002/kjfp.2018.25.4.482
    [59]
    KHASKHELI A A, TALPUR F N, CEBECI A A, et al. One-pot conjugated linoleic acid production from castor oil by Rhizopus oryzae lipase and resting cells of Lactobacillus plantarum[J]. Bioscience, Biotechnology, and Biochemistry,2017,81(10):2002−2008. doi: 10.1080/09168451.2017.1356218
    [60]
    LEE N K, PAIK H D. Bioconversion using lactic acid bacteria: Ginsenosides, GABA, and phenolic compounds[J]. Journal of Microbiology and Biotechnology,2017,27(5):869−877. doi: 10.4014/jmb.1612.12005
    [61]
    高鹤. 双歧杆菌生物转化共轭亚油酸的机制研究[D]. 无锡: 江南大学, 2020.

    GAO H. Mechanism for conjugated linoleic acid transformation by bifidobacterial[D]. Wuxi: Jiangnan Univer-sity, 2020.
    [62]
    KANKLAI J, SOMWONG T C, RUNGSIRIVANICH P, et al. Screening of GABA-producing lactic acid bacteria from Thai fermented foods and probiotic potential of Levilactobacillus brevis F064A for GABA-fermented mulberry juice production[J]. Microorganisms,2020,9(1):33. doi: 10.3390/microorganisms9010033
    [63]
    KIM J Y, LEE M Y, JI G E, et al. Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100[J]. International Journal of Food Microbiology,2009,130(1):12−16. doi: 10.1016/j.ijfoodmicro.2008.12.028
    [64]
    YOGESWARA I B A, MANEERAT S, HALTRICH D. Glutamate decarboxylase from lactic acid bacteria-a key enzyme in GABA synthesis[J]. Microorganisms,2020,8(12):1923. doi: 10.3390/microorganisms8121923
  • Cited by

    Periodical cited type(6)

    1. 王雅利,赵楠,葛黎红,赖海梅,杨梦露,黄玉立,梅源,刘达玉,朱永清. 酵母菌对发酵萝卜品质的影响. 食品与发酵工业. 2024(24): 68-75 .
    2. 刘艳秋,范梓琪,常凯,毛迪锐,徐澎,耿业业. 玫瑰面包啤酒生产工艺优化. 北华大学学报(自然科学版). 2023(01): 134-140 .
    3. 颜子豪,孟庆芳,陈江魁,孙嘉怡. 冰糖红梨酒发酵工艺优化及香气成分分析. 食品工业科技. 2022(06): 228-235 . 本站查看
    4. 李夏,谢光杰,王东鹏,徐旻. 发酵条件对高山葡萄石斛酒品质的影响研究. 食品安全质量检测学报. 2022(12): 4036-4042 .
    5. 赵彤,王宣,吴黎明,延莎,卢焕仙,赵洪木,薛晓锋. 发酵蜂产品研究进展. 食品工业科技. 2022(14): 461-466 . 本站查看
    6. 刁体伟,陈晓姣,冷银江,魏鑫,赖晓琴,马懿. 植物源多酚对梨酒抗氧化能力及其感官品质的影响. 食品与发酵工业. 2022(23): 93-101 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (880) PDF downloads (111) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return