Citation: | WANG Min, XU Guohui, ZHAO Yiling, et al. Inhibition Effect and Molecular Mechanism of Hypericin on Xanthine Oxidase[J]. Science and Technology of Food Industry, 2022, 43(12): 92−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090207. |
[1] |
ZHANG C, ZHANG G, PAN J, et al. Galangin competitively inhibits xanthine oxidase by a ping-pong mechanism[J]. Food Research International,2016,89:152−160. doi: 10.1016/j.foodres.2016.07.021
|
[2] |
CHEN Y Y, ZHAO Z A, LI Y M, et al. Baicalein alleviates hyperuricemia by promoting uric acid excretion and inhibiting xanthine oxidase[J]. Phytomedicine,2021,80(40):153374.
|
[3] |
ZHANG C, ZHANG G W, LIAO Y J, et al. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase[J]. Food Chemistry,2017,221:1569−1577. doi: 10.1016/j.foodchem.2016.10.136
|
[4] |
樊慧杰, 柴智, 周然. 金丝桃苷对神经系统保护作用的研究进展[J]. 中华中医药杂志,2018,33(10):4560−4562. [FAN Huijie, CHAI Zhi, ZHOU Ran. Research progress on neuroprotective effects of hyperoside[J]. Chinese Journal of Traditional Chinese Medicine,2018,33(10):4560−4562.
FAN Huijie, CHAI Zhi, ZHOU Ran. Research progress on neuroprotective effects of hyperoside[J]. Chinese Journal of Traditional Chinese Medicine, 2018, 33(10): 4560-4562.
|
[5] |
董靖雯, 况泽安, 殷明晓, 等. 金丝桃苷通过下调PD-L1表达发挥抗非小细胞肺癌作用研究[J]. 药学学报, 2021, 56(10): 2817−2824.
DONG Jingwen, KUANG Zean, YIN Mingxiao, et al. Hyperoside exerts its anti-tumor activity by reducing the PD-L1 level in non-small cell lung cancer[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2817−2824.
|
[6] |
郑传痴, 杨艳, 韦余, 等. 金丝桃苷对小鼠的抗疲劳作用及机制研究[J]. 食品工业科技,2021,42(23):6. [ZHENG Chuanchi, YANG Yan, WEI Yu, et al. Study on the effects and mechanism of hyperoside on anti-Fatigue in mice[J]. Science and Technology of Food Industry,2021,42(23):6.
ZHENG Chuanchi, YANG Yan, WEI Yu, et al. Study on the effects and mechanism of hyperoside on anti-Fatigue in mice[J]. Science and Technology of Food Industry, 2021, 42(23): 6.
|
[7] |
WANG J, SUN S W, ZHAO K, et al. Insights into the inhibitory mechanism of purpurogallin on xanthine oxidase by multiple spectroscopic techniques and molecular docking[J]. Journal of Molecular Structure,2021,1228:129772. doi: 10.1016/j.molstruc.2020.129772
|
[8] |
LI Jiaqi, TIAN Ran, LIANG Guizhao, et al. Interaction mechanism of flavonoids with whey protein isolate: A spectrofluorometric and theoretical investigation[J]. Food Chemistry,2021,355:129617. doi: 10.1016/j.foodchem.2021.129617
|
[9] |
LI Q Y, SHI C C, WANG M, et al. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities[J]. Journal of Functional Foods Journal,2019,53:276−285. doi: 10.1016/j.jff.2018.11.024
|
[10] |
胡鹏. 几种多酚与牛乳蛋白相互作用研究[D]. 南昌: 南昌大学, 2019.
HU Peng. The study on the interaction between polyphenols and milk protein[D]. Nanchang: Nanchang University, 2019.
|
[11] |
LIN Suyun, ZHANG Guowen, LIAO Yijing, et al. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism[J]. International Journal of Biological Macromolecules,2015,81:274−282. doi: 10.1016/j.ijbiomac.2015.08.017
|
[12] |
ZHAO Jie, HUANG Lin, SUN Chunyong, et al. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations[J]. Food Chemistry,2020,323:126807. doi: 10.1016/j.foodchem.2020.126807
|
[13] |
HUANG Y M, WU P, YING J, et al. Mechanistic study on inhibition of porcine pancreatic α-amylase using the flavonoids from dandelion[J]. Food Chemistry,2021,344:128610. doi: 10.1016/j.foodchem.2020.128610
|
[14] |
NORIYOSHI M, KENICHI N, AYAMI M, et al. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase[J]. Food Chemistry,2015,166:270−274. doi: 10.1016/j.foodchem.2014.06.021
|
[15] |
LIU Xiaotian, LIU Tiantian, XU Huilong, et al. Inhibitory kinetics and bioactivities of nuciferine and methyl ganoderate on Mucor miehei lipase and 3T3-L1 preadipocytes[J]. International Journal of Biological Macromolecules,2020,163:1719−1728. doi: 10.1016/j.ijbiomac.2020.09.127
|
[16] |
SHARAT S, SOURAV D, ATANU S R. Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis[J]. International Journal of Biological Macromolecules,2020,165:2275−2285. doi: 10.1016/j.ijbiomac.2020.10.023
|
[17] |
LI Xiangrong, WANG Xuezhen, LIU Hongyi, et al. Mechanism evaluation of the interactions between eight flavonoids and γ-globulin based on multi-spectroscopy[J]. Journal of Molecular Structure,2021,1225:129291. doi: 10.1016/j.molstruc.2020.129291
|
[18] |
OU Rongrong, LIN Lianzhu, ZHAO Mouming, et al. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies[J]. International Journal of Biological Macromolecules,2020,162:1526−1535. doi: 10.1016/j.ijbiomac.2020.07.297
|
[19] |
YANG Jichen, WANG Xiaoli, ZHANG Chuanying, et al. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose[J]. Food Chemistry,2021,347:129056. doi: 10.1016/j.foodchem.2021.129056
|
[20] |
YU Jie, LI Xiangrong, LIU Hongyi, et al. Interaction behavior between five flavonoids and pepsin: Spectroscopic analysis and molecular docking[J]. Journal of Molecular Structure,2021,1223:128978. doi: 10.1016/j.molstruc.2020.128978
|
[21] |
ZHANG Cen, WANG Rui, ZHANG Guowen, et al. Mechanistic insights into the inhibition of quercetin on xanthine oxidase[J]. International Journal of Biological Macromolecules,2018,112:405−412. doi: 10.1016/j.ijbiomac.2018.01.190
|
[22] |
SI Yuexiu, WANG Zhijiang, DAEUI Park, et al. Effect of hesperetin on tyrosinase: Inhibition kinetics integrated computational simulation study[J]. International Journal of Biological Macromolecules,2012,50:257−262. doi: 10.1016/j.ijbiomac.2011.11.001
|
[23] |
XIE Lianghua, XIE Jiahong, XU Yang, et al. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy[J]. Food Function,2020,11:8527−8536. doi: 10.1039/D0FO01262A
|
[24] |
HE X M, CARTER D C. Atomic structure and chemistry of human serum albumin[J]. Nature,1992,358:209−215. doi: 10.1038/358209a0
|
[25] |
PHILIP D, ROSS S SUBRAMANIAN. Thermodynamics of macromolecular association reactions: Analysis of forces contributing to stabilization[J]. Biophysical Journal,1980,32:79−81. doi: 10.1016/S0006-3495(80)84918-6
|
[26] |
GE Feng, CHEN Chaoyin, LIU Diqiu, et al. Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy[J]. Journal of Luminescence,2010,130:168−173. doi: 10.1016/j.jlumin.2009.08.003
|
[27] |
LOREDANA DUMITRAS C, NICOLETA ST˘ANCIUC, IULIANA APRODU. New insights into xanthine oxidase behavior upon heating using spectroscopy and in silico approach[J]. International Journal of Biological Macromolecules,2016,88:306−312. doi: 10.1016/j.ijbiomac.2016.03.072
|
[28] |
KANAKIS C, HASNI I, BOURASSA P, et al. Milk β-lactoglobulin complexes with tea polyphenols[J]. Food Chemistry,2011,127:1046−1055. doi: 10.1016/j.foodchem.2011.01.079
|
1. |
王英,张会,刘小莉,施亚萍,夏秀东,周剑忠. 不同发酵剂对浅渍发酵豇豆风味成分和滋味的影响. 中国酿造. 2022(11): 89-95 .
![]() |