Citation: | XU Kang, WANG Zhe, XUE Zhipeng, et al. Effect and Mechanism of Probiotics in Alleviating or Treating Inflammatory Bowel Disease[J]. Science and Technology of Food Industry, 2022, 43(20): 414−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090166. |
[1] |
ZHANG Y Z, LI Y Y. Inflammatory bowel disease: Pathogenesis[J]. World Journal of Gastroenterology,2014,20(1):91−99. doi: 10.3748/wjg.v20.i1.91
|
[2] |
NA S Y, MOON W. Perspectives on current and novel treatments for inflammatory bowel disease[J]. Gut and Liver,2019,13(6):604−616. doi: 10.5009/gnl19019
|
[3] |
HILL C, GUARNER F, REID G, et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews Gastroenterology & Hepatology,2014,11(8):506−514.
|
[4] |
BOIRIVANT M, STROBER W. The mechanism of action of probiotics[J]. Current Opinion in Gastroenterology,2007,23(6):679−692. doi: 10.1097/MOG.0b013e3282f0cffc
|
[5] |
GUANDALINI S, SANSOTTA N. Probiotics in the treatment of inflammatory bowel disease[J]. Advances in Experimental Medicine and Biology,2019,1125:101−107.
|
[6] |
LIU Y W, SU Y W, ONG W K, et al. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities[J]. International Immunopharmacology,2011,11(12):2159−2166. doi: 10.1016/j.intimp.2011.09.013
|
[7] |
SUN M, LIU Y, SONG Y, et al. The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis[J]. Food & Function,2020,11(6):5205−5222.
|
[8] |
CHUNG Y W, CHOI J H, OH T Y, et al. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice[J]. Clinical and Experimental Immunology,2008,151(1):182−189.
|
[9] |
GHASEMI-NIRI S F, ABDOLGHAFFARI A H, FALLAH-BENAKOHAL S, et al. On the benefit of whey-cultured Lactobacillus casei in murine colitis[J]. Journal of Physiology and Pharmacology,2011,62(3):341−346.
|
[10] |
CHEN C L, HSU P Y, PAN T M. Therapeutic effects of Lactobacillus paracasei subsp.paracasei NTU 101 powder on dextran sulfate sodium-induced colitis in mice[J]. Journal of Food and Drug Analysis,2019,27(1):83−92. doi: 10.1016/j.jfda.2018.05.004
|
[11] |
SCHREIBER O, PETERSSON J, PHILLIPSON M, et al. Lactobacillus reuteri prevents colitis by reducing P-selectin-associated leukocyte- and platelet-endothelial cell interactions[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2009,296(3):G534−G542. doi: 10.1152/ajpgi.90470.2008
|
[12] |
MIYAUCHI E, MORITA H, TANABE S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo[J]. Journal of Dairy Science,2009,92(6):2400−2408. doi: 10.3168/jds.2008-1698
|
[13] |
JO S G, NOH E J, LEE J Y, et al. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice[J]. Journal of Microbiology,2016,54(7):503−509. doi: 10.1007/s12275-016-6160-2
|
[14] |
CHAUHAN R, VASANTHAKUMARI A S, PANWAR H, et al. Amelioration of colitis in mouse model by exploring antioxidative potentials of an indigenous probiotic strain of Lactobacillus fermentum Lf1[J]. BioMed Research International,2014,2014(3):206732.
|
[15] |
IZUMI H, MINEGISHI M, SATO Y, et al. Bifidobacterium breve alters immune function and ameliorates DSS-induced inflammation in weanling rats[J]. Pediatric Research,2015,78(4):407−416. doi: 10.1038/pr.2015.115
|
[16] |
SRUTKOVA D, SCHWARZER M, HUDCOVIC T, et al. Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner[J]. PloS One,2015,10(7):e0134050. doi: 10.1371/journal.pone.0134050
|
[17] |
MIYAUCHI E, OGITA T, MIYAMOTO J, et al. Bifidobacterium longum alleviates dextran sulfate sodium-induced colitis by suppressing IL-17A response: Involvement of intestinal epithelial costimulatory molecules[J]. PloS one,2013,8(11):e79735. doi: 10.1371/journal.pone.0079735
|
[18] |
OGITA T, NAKASHIMA M, MORITA H, et al. Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells[J]. Journal of biomedicine & biotechnology,2011,2011:378417.
|
[19] |
BAILEY J R, VINCE V, WILLIAMS N A, et al. Streptococcus thermophilus NCIMB 41856 ameliorates signs of colitis in an animal model of inflammatory bowel disease[J]. Beneficial microbes,2017,8(4):605−614. doi: 10.3920/BM2016.0110
|
[20] |
CHEN Y, ZHANG M, REN F. A Role of exopolysaccharide produced by Streptococcus thermophilus in the intestinal inflammation and mucosal barrier in Caco-2 monolayer and dextran sulphate sodium-induced experimental murine colitis[J]. Molecules,2019,24(3):513. doi: 10.3390/molecules24030513
|
[21] |
IM E, CHOI Y J, POTHOULAKIS C, et al. Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice[J]. The Journal of Nutrition,2009,139(10):1848−1854. doi: 10.3945/jn.109.108613
|
[22] |
ZHANG H L, LI W S, XU D N, et al. Mucosa-reparing and microbiota-balancing therapeutic effect of Bacillus subtilis alleviates dextrate sulfate sodium-induced ulcerative colitis in mice[J]. Experimental and Therapeutic Medicine,2016,12(4):2554−2562. doi: 10.3892/etm.2016.3686
|
[23] |
CAO G T, WANG K L, LI Z M, et al. Bacillus amyloliquefaciens ameliorates dextran sulfate sodium-induced colitis by improving gut microbial dysbiosis in mice model[J]. Frontiers in Microbiology,2019,9:3260. doi: 10.3389/fmicb.2018.03260
|
[24] |
KANDA T, NISHIDA A, OHNO M, et al. Enterococcus durans TN-3 induces regulatory T cells and suppresses the development of dextran sulfate sodium (DSS)-induced experimental colitis[J]. PloS One,2016,11(7):e0159705. doi: 10.1371/journal.pone.0159705
|
[25] |
CHOI E J, LEE H J, KIM W J, et al. Enterococcus faecalis EF-2001 protects DNBS-induced inflammatory bowel disease in mice model[J]. PloS One,2019,14(2):e0210854. doi: 10.1371/journal.pone.0210854
|
[26] |
SOUZA É L, ELIAN S D, PAULA L M, et al. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model[J]. Journal of Medical Microbiology,2016,65(3):201−210. doi: 10.1099/jmm.0.000222
|
[27] |
LU J B, DONG B Y, CHEN A L, et al. Escherichia coli promotes DSS-induced murine colitis recovery through activation of the TLR4/NF-κB signaling pathway[J]. Molecular Medicine Reports,2019,19(3):2021−2028.
|
[28] |
ZHANG M M, QIU X Y, ZHANG H, et al. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats[J]. PloS One,2014,9(10):e109146. doi: 10.1371/journal.pone.0109146
|
[29] |
GANJI-ARJENAKI M, RAFIEIAN-KOPAEI M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review[J]. Journal of Cellular Physiology,2018,233(3):2091−2103. doi: 10.1002/jcp.25911
|
[30] |
REMBACKEN B J, SNELLING A M, HAWKEY P M, et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: A randomised trial[J]. Lancet,1999,354(9179):635−639. doi: 10.1016/S0140-6736(98)06343-0
|
[31] |
TAMAKI H, NAKASE H, INOUE S, et al. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, placebo-controlled multicenter trial[J]. Digestive Endoscopy:Official Journal of the Japan Gastroenterological Endoscopy Society,2016,28(1):67−74.
|
[32] |
ZOCCO M A, DAL VERME L Z, CREMONINI F, et al. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis[J]. Alimentary Pharmacology & Therapeutics,2006,23(11):1567−1574.
|
[33] |
OLIVA S, DI NARDO G, FERRARI F, et al. Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis[J]. Alimentary Pharmacology & Therapeutics,2012,35(3):327−334.
|
[34] |
SOOD A, MIDHA V, MAKHARIA G K, et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis[J]. Clinical Gastroenterology and Hepatology,2009,7(11):1202−1209. doi: 10.1016/j.cgh.2009.07.016
|
[35] |
ISHIKAWA H, AKEDO I, UMESAKI Y, et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis[J]. Journal of the American College of Nutrition,2003,22(1):56−63. doi: 10.1080/07315724.2003.10719276
|
[36] |
BOUSVAROS A, GUANDALINI S, BALDASSANO R N, et al. A randomized, double-blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease[J]. Inflammatory Bowel Diseases,2005,11(9):833−839. doi: 10.1097/01.MIB.0000175905.00212.2c
|
[37] |
BOURREILLE A, CADIOT G, LE DREAU G, et al. Saccharomyces boulardii does not prevent relapse of Crohn's disease[J]. Clinical gastroenterology and hepatology:The Official Clinical Practice Journal of the American Gastroenterological Association,2013,11(8):982−987. doi: 10.1016/j.cgh.2013.02.021
|
[38] |
MARTEAU P, LéMANN M, SEKSIK P, et al. Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn's disease: A randomised, double blind, placebo controlled GETAID trial[J]. Gut,2006,55(6):842−847. doi: 10.1136/gut.2005.076604
|
[39] |
LIU X J, YU R, ZOU K F. Probiotic mixture VSL#3 alleviates dextran sulfate sodium-induced colitis in mice by downregulating T follicular helper cells[J]. Current medical science,2019,39(3):371−378. doi: 10.1007/s11596-019-2045-z
|
[40] |
TOUMI R, ABDELOUHAB K, RAFA H, et al. Beneficial role of the probiotic mixture ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis[J]. Immunopharmacology and immunotoxicology,2013,35(3):403−409. doi: 10.3109/08923973.2013.790413
|
[41] |
王彦博. 功能各异的益生菌复合缓解DSS诱导的溃疡性结肠炎机制研究 [D]. 吉林: 吉林大学, 2020.
WANG Y B. Study on the mechanism of compound probiotics with different functions to relieve DSS-induced ulcerative colitis[D]. Jilin: Jilin University, 2020.
|
[42] |
YOSHIMATSU Y, YAMADA A, FURUKAWA R, et al. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis[J]. World Journal of Gastroenterology,2015,21(19):5985−5994. doi: 10.3748/wjg.v21.i19.5985
|
[43] |
SARAO L K, ARORA M. Probiotics, prebiotics, and microencapsulation: A review[J]. Critical Reviews in Food Science and Nutrition,2017,57(2):344−371. doi: 10.1080/10408398.2014.887055
|
[44] |
李东尧. 低聚糖对肠道轴向微生物代谢功能的影响及机制 [D]. 无锡: 江南大学, 2020.
LI D Y. The effect and mechanism of oligosaccharides on intestinal axial microbial metabolism[D]. Wuxi: Jiangnan University, 2020.
|
[45] |
WASILEWSKI A, ZIELIŃSKA M, STORR M, et al. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease[J]. Inflammatory bowel diseases,2015,21(7):1674−1682. doi: 10.1097/MIB.0000000000000364
|
[46] |
HIJOVÁ E, ŠOLTÉSOVÁ A, SALAJ R, et al. Preventive use of Lactobacillus plantarum LS/07 and inulin to relieve symptoms of acute colitis[J]. Acta Biochimica Polonica,2015,62(3):553−557. doi: 10.18388/abp.2015_1008
|
[47] |
王亚楠, 孟祥辰, 王春赛尔, 等. 益生菌和合生元对急性结肠炎小鼠肠道炎症及微生物群的影响[J]. 中华内科杂志,2019,58(8):584−591. [WANG Y N, MENG X C, WANG C S E, et al. The influence of probiotics and synbiotics on intestinal inflammation and microbiota in mice with acute colitis[J]. Zhonghua Nei Ke Za Zhi,2019,58(8):584−591.
|
[48] |
ISHIKAWA H, MATSUMOTO S, OHASHI Y, et al. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: A randomized controlled study[J]. Digestion,2011,84(2):128−133. doi: 10.1159/000322977
|
[49] |
FUJIMORI S, GUDIS K, MITSUI K, et al. A randomized controlled trial on the efficacy of synbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis[J]. Nutrition,2009,25(5):520−525. doi: 10.1016/j.nut.2008.11.017
|
[50] |
郭宇冰, 王晓娜, 刘欣, 等. 肠道菌群与炎症性肠病关系的研究现状[J]. 结直肠肛门外科,2020,26(4):402−406,422. [GUO Yubing, WANG Xiaona, LIU Xin, et al. Research status of the relationship between intestinal flora and inflammatory bowel disease[J]. Colorectal and Anal Surgery,2020,26(4):402−406,422. doi: 10.19668/j.cnki.issn1674-0491.2020.04.003
|
1. |
郭莉滨. “双碳”和“健康中国”背景下植物基肉制品的营养组分及健康功能性研究进展. 食品安全质量检测学报. 2025(03): 123-129 .
![]() | |
2. |
陈金换,安红周,孙嘉瑜,张皓冰,黄泽华. 植物蛋白的改性加工及热点应用领域研究进展. 粮油食品科技. 2025(02): 83-89 .
![]() | |
3. |
王庆沛,宇光海,廖爱美,潘龙,黄继红. 微生物合成血红蛋白的研究进展及其在食品中的应用. 中国调味品. 2024(01): 189-197 .
![]() | |
4. |
王彦丽,刘萌,朱来景,赵祥忠. 辣椒添加对植物蛋白肉感官特性的影响. 中国调味品. 2024(03): 28-32 .
![]() | |
5. |
刘静,金娜,石春芹,李永双,邓清升,罗旋飞,刘艳,杨宝君,聂龙. 响应面法优化豌豆蛋白植物肉配方及其体外消化分析. 食品工业科技. 2024(08): 216-226 .
![]() | |
6. |
芦鑫,路风银,孙强,宋国辉,黄纪念. 植物蛋白肉感官品质与营养安全研究进展. 粮食与油脂. 2024(06): 6-10 .
![]() | |
7. |
俎新宇,赵亚男,王新新,杨进洁,边文洁,赵祥忠,梁艳. DHA藻油微胶囊粉对植物蛋白肉品质特性的影响. 食品研究与开发. 2024(14): 23-29 .
![]() | |
8. |
周鑫,马宁,王鑫,王恰,刘业学,田晓静,王稳航. 大豆组织蛋白发酵产品的体外消化特性. 食品研究与开发. 2024(17): 59-65 .
![]() | |
9. |
麻梦寒,冯朵,李梦洁,李琥,郭丽萍,王靖. 植物基食品加工技术、营养成分及其对不同人群的影响研究进展. 食品安全质量检测学报. 2024(18): 123-130 .
![]() | |
10. |
郭志伟,杨进洁,边文洁,赵祥忠,王晨莹. 酵母抽提物对植物蛋白肉品质的影响. 食品研究与开发. 2024(22): 9-14 .
![]() | |
11. |
葛志优,王羽,高艳娥,蔡维. 植物蛋白肉超声振动3D打印方法与试验. 农业工程学报. 2024(20): 259-268 .
![]() | |
12. |
王谊,陈志娜,尹琳琳,卞楠月,叶韬,陆剑锋. 豌豆蛋白粉添加量对低规格克氏原螯虾肉糜凝胶品质的影响. 廊坊师范学院学报(自然科学版). 2024(04): 56-62 .
![]() | |
13. |
刘萌,王聪睿,刘波,赵祥忠. 豇豆血红蛋白Lb Ⅱ在大肠杆菌中的重组表达条件优化、纯化与鉴定. 食品工业科技. 2023(04): 163-170 .
![]() | |
14. |
樊炯,马骏骅,颜金鑫,张慧恩,杨华. 冷藏温度对植物基培根品质的影响. 食品与机械. 2023(05): 115-118+131 .
![]() | |
15. |
孙莹,王龙,朱秀清,江连洲. 植物基蛋白肉的研究现状与挑战. 食品工业科技. 2023(17): 438-446 .
![]() | |
16. |
蔡维,王羽,高艳娥,李丽. 植物蛋白肉3D打印工艺参数优化. 农业工程学报. 2023(12): 254-264 .
![]() | |
17. |
刘浩栋,张金闯,陈琼玲,张玉洁,李同庆,王强. 植物基肉制品营养品质研究现状. 中国食品学报. 2023(08): 428-439 .
![]() | |
18. |
李振,相海,赵有斌,宋健宇,张德程,梁昊,张艺潇. 植物蛋白螺杆挤压组织化技术的研究进展. 中国油脂. 2023(09): 67-74 .
![]() | |
19. |
陶相锦,黄立强,王冬玲,马文平,马世岷. 植物蛋白肉生产的关键因素分析. 食品安全导刊. 2023(30): 160-162 .
![]() | |
20. |
佟宗航,李亚敏,高昂,谢赫然,高子凡,邢竹青. 植物蛋白肉产品品质评价及过敏原分析. 食品工业科技. 2022(04): 387-395 .
![]() | |
21. |
臧学丽,黄志远,叶春民. 高斯软件模拟转谷氨酰胺酶交联大豆分离蛋白机理的研究. 高分子通报. 2022(10): 108-119 .
![]() | |
22. |
袁丽,孔云菲,贾世亮,石彤,励建荣,包玉龙,高瑞昌. 植物蛋白在动物肉糜类制品中的应用现状及研究进展. 肉类研究. 2022(10): 43-50 .
![]() | |
23. |
豆康宁,赵永敢,金少举,李超敏,邓同兴,赵志军. 植物基肉制品的研究进展. 食品与机械. 2022(11): 230-235 .
![]() | |
24. |
李家磊,管立军,高扬,严松,王崑仑,王春丽,李晓娟,卢淑雯,李波,周野. 液熏高水分挤压组织化植物蛋白加工工艺优化. 中国食品学报. 2022(11): 214-227 .
![]() | |
25. |
高智利,杨军飞. 植物蛋白肉的研究进展与发展趋势. 食品安全导刊. 2021(12): 184-186 .
![]() | |
26. |
周亚楠,王淑敏,马小清,缪松,卢旭. 植物基人造肉的营养特性与食用安全性. 食品安全质量检测学报. 2021(11): 4402-4410 .
![]() |