LAN Xuyue, WANG Ling, DU Qinling, et al. Structural and Physicochemical Properties of Longan Kernel Starch by Enzyme-assisted Alkali Extraction[J]. Science and Technology of Food Industry, 2022, 43(13): 42−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090165.
Citation: LAN Xuyue, WANG Ling, DU Qinling, et al. Structural and Physicochemical Properties of Longan Kernel Starch by Enzyme-assisted Alkali Extraction[J]. Science and Technology of Food Industry, 2022, 43(13): 42−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090165.

Structural and Physicochemical Properties of Longan Kernel Starch by Enzyme-assisted Alkali Extraction

More Information
  • Received Date: September 12, 2021
  • Available Online: April 25, 2022
  • Objective: To clarify the structure and physicochemical properties of longan kernel starch extracted by enzyme-assisted alkali method. Methods: Using longan kernel as raw material and alkaline protease as enzymatic hydrolysis agent, the longan kernel starch was extracted. The chemical composition, particle size, morphology, crystal structure, transparency, solubility and swelling power, thermodynamic properties and gelatinizing properties of starch were studied. Results: 100 g longan kernel starch contained 82.64 g starch, 0.68 g crude fat, 0.46 g crude protein and 1.06 g ash, and its amylose content was 36.37%. Its particles were mostly elliptic or irregular polygon, and their average size was 11.21 μm. The starch had type A crystalline structure and higher short-range order degree. In addition, 1% (w/v) longan kernel starch paste had 4% transparency. Its solubility and swelling power increased with the increase of temperature, being 11.26% and 15.93% at 90 ℃, respectively. Longan kernel starch had high gelatinization initial temperature (70.4 ℃), peak temperature (75.9 ℃), conclusion temperature (82.1 ℃) and enthalpy change (13.7 J/g). Its hot paste stability was poor while its cold paste stability was better. Conclusion: Longan kernel starch by enzyme-assisted alkali extraction had high amylose content and its protein content decreased obviously. In addition, it had small granules, and it was not easily gelatinized.
  • [1]
    曾铿然, 何达为, 张世昂, 等. 龙眼典型加工副产物的营养成分研究[J]. 中国热带农业,2021(3):44−49. [ZENG K R, HE D W, ZHANG S A, et al. Study on the nutritional components of the typical longan processing by-products[J]. China Tropical Agriculture,2021(3):44−49. doi: 10.3969/j.issn.1673-0658.2021.03.011

    ZENG K R, HE D W, ZHANG S A, et al. Study on the nutritional components of the typical longan processing by-products[J]. China Tropical Agriculture, 2021(3): 44-49. doi: 10.3969/j.issn.1673-0658.2021.03.011
    [2]
    肖更生, 黄儒强, 曾孝庆, 等. 龙眼核的营养成分[J]. 食品科技,2004(1):93−94. [XIAO G S, HUANG R Q, ZENG X Q, et al. Nutrition composition of longan seeds[J]. Food Science and Technology,2004(1):93−94. doi: 10.3969/j.issn.1005-9989.2004.01.032

    XIAO G S, HUANG R Q, ZENG X Q, et al. Nutrition composition of longan seeds[J]. Food Science and Technology, 2004(1): 93-94. doi: 10.3969/j.issn.1005-9989.2004.01.032
    [3]
    彭小燕, 蔡香珍, 叶丹榕, 等. 高速剪切辅助碱法从龙眼核种提取淀粉的研究[J]. 农产品加工,2019(7):27−30. [PENG X Y, CAI X Z, YE D R, et al. Study of starch extraction from longan nucleus by high speed shearing assisted alkaline method[J]. Farm Products Processing,2019(7):27−30.

    PENG X Y, CAI X Z, YE D R, et al. Study of starch extraction from longan nucleus by high speed shearing assisted alkaline method[J]. Farm Products Processing, 2019(7): 27-30.
    [4]
    HU Z M, ZHAO L, HU Z Y, et al. Hierarchical structure, gelatinization, and digestion characteristics of starch from longan (Dimocarpus longan Lour.) seeds[J]. Molecules,2018,23(12):3262. doi: 10.3390/molecules23123262
    [5]
    李秀娟, 杨萍, 钟敏, 等. 龙眼核淀粉颗粒性质的研究[J]. 食品工业科技,2003(6):17−19. [LI X J, YANG P, ZHONG M, et al. Study on granule properties of longan kernel starch[J]. Science and Technology of Food Industry,2003(6):17−19. doi: 10.3969/j.issn.1002-0306.2003.06.008

    LI X J, YANG P, ZHONG M, et al. Study on granule properties of longan kernel starch[J]. Science and Technology of Food Industry, 2003(6): 17-19. doi: 10.3969/j.issn.1002-0306.2003.06.008
    [6]
    孔露, 孔茂竹, 余佳熹, 等. 响应面优化碱性蛋白酶法提取藜麦淀粉工艺[J]. 食品研究与开发,2020,41(2):100−106. [KONG L, KONG M Z, YU J X, et al. Optimization of alkaline protease extraction of Chenopodium quinoa starch by response surface methodology[J]. Food Research and Development,2020,41(2):100−106.

    KONG L, KONG M Z, YU J X, et al. Optimization of alkaline protease extraction of chenopodium quinoa starch by response surface methodology[J]. Food Research and Development, 2020, 41(2): 100-106.
    [7]
    傅新征. 薏苡仁淀粉制备与性质研究及改性应用[D]. 福州: 福建农林大学, 2012

    FU X Z. Study on preparation, properties, modification and application of the Coix seed starch[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012.
    [8]
    段冰, 杨玲, 郭睿, 等. 响应面优化碱法提取高粱淀粉的工艺[J]. 农产品加工,2020(24):28−31,35. [DUAN B, YANG L, GUO R, et al. Optimization of extraction process of sorghum starch by response surface methodology[J]. Farm Products Processing,2020(24):28−31,35.

    DUAN B, YANG L, GUO R, et al. Optimization of extraction process of sorghum starch by response surface methodology[J]. Farm Products Processing, 2020(24): 28-31, 35.
    [9]
    孔露, 孔茂竹, 余佳熹, 等. 藜麦淀粉消化特性与理化特性研究[J]. 食品科技,2019,44(4):285−290. [KONG L, KONG M Z, YU J X, et al. Digestibility and physicochemical properties of quinoa starch[J]. Food Science and Technology,2019,44(4):285−290.

    KONG L, KONG M Z, YU J X, et al. Digestibility and physicochemical properties of quinoa starch[J]. Food Science and Technology, 2019, 44(4): 285-290.
    [10]
    姚月华, 唐宁, 杨舒莹, 等. 箭筈豌豆淀粉理化及消化特性研究[J]. 中国粮油学报,2020,35(12):8−14, 22. [YAO Y H, TANG N, YANG S Y, et al. The physicochemical and digestive properties of common vetch starch[J]. Journal of the Chinese Cereals and Oils Association,2020,35(12):8−14, 22. doi: 10.3969/j.issn.1003-0174.2020.12.003

    YAO Y H, TANG N, YANG S Y, et al. The physicochemical and digestive properties of common vetch starch[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(12): 8-14, 22. doi: 10.3969/j.issn.1003-0174.2020.12.003
    [11]
    MAPENGO C R, RAY S S, EMMAMBUX M N. Pasting properties of hydrothermally treated maize starch with added stearic acid[J]. Food Chemistry,2019,289:396−403. doi: 10.1016/j.foodchem.2019.02.130
    [12]
    LIU D, TANG W, XIN Y, et al. Comparison on structure and physicochemical properties of starches from adzuki bean and dolichos bean[J]. Food Hydrocolloids,2020,105:105784. doi: 10.1016/j.foodhyd.2020.105784
    [13]
    GUO K, LIN L H, FAN X X, et al. Comparison of structural and functional properties of starches from five fruit kernels[J]. Food Chemistry,2018,257:75−82. doi: 10.1016/j.foodchem.2018.03.004
    [14]
    刘垚, 高群玉. 小颗粒淀粉性质和应用综述[J]. 粮食与饲料工业,2007(8):22−23. [LIU Y, GAO Q Y. Review on properties and applications of small starch[J]. Cereal and Feed Industry,2007(8):22−23. doi: 10.3969/j.issn.1003-6202.2007.08.009

    LIU Y, GAO Q Y. Review on properties and applications of small starch[J]. Cereal and Feed Industry, 2007(8): 22-23. doi: 10.3969/j.issn.1003-6202.2007.08.009
    [15]
    CHAVAN P, SINHMAR A, NEHRA M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: A review[J]. Food Chemistry,2021,364:130416. doi: 10.1016/j.foodchem.2021.130416
    [16]
    ZOU J, XU M J, ZOU Y F, et al. Physicochemical properties and microstructure of Chinese yam (Dioscorea opposite Thunb.) flour[J]. Food Hydrocolloids,2021,113:106448. doi: 10.1016/j.foodhyd.2020.106448
    [17]
    苗兰鸽, 许燕, 赵思明, 等. 花青素对不同直链淀粉含量的淀粉理化特性的影响[J]. 食品工业科技,2020,41(14):22−28. [MIAO L G, XU Y, ZHAO S M, et al. Effects of anthocyanin on physicochemical properties of starches with different amylase contents[J]. Science and Technology of Food Industry,2020,41(14):22−28.

    MIAO L G, XU Y, ZHAO S M, et al. Effects of anthocyanin on physicochemical properties of starches with different amylase contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28.
    [18]
    郭强. 天麻淀粉结构及理化性质的研究[D]. 重庆: 西南大学, 2016

    GUO Q. Study on the structure and physicochemical properties of Rhizoma gastrodiae starch[D]. Chongqing: Southwest University, 2016.
    [19]
    周中凯, 王俊轩, 李莹. 壳寡糖修饰抗性淀粉的物化与消化特性研究[J]. 粮食与油脂,2017,30(5):16−19. [ZHOU Z K, WANG J X, LI Y. Study on physicochemical properties and digestion characteristics of resistant starch modified by chitosan oligosaccharide[J]. Cereals and Oils,2017,30(5):16−19. doi: 10.3969/j.issn.1008-9578.2017.05.005

    ZHOU Z K, WANG J X, LI Y. Study on physicochemical properties and digestion characteristics of resistant starch modified by chitosan oligosaccharide[J]. Cereals and Oils, 2017, 30(5): 16-19. doi: 10.3969/j.issn.1008-9578.2017.05.005
    [20]
    连喜军, 郭俊杰, 刘立增. 淀粉红外峰归属探讨[J]. 粮食加工,2015,40(1):43−45. [LIAN X J, GUO J J, LIU L Z. Study on attribution of starch infrared peak[J]. Grain Processing,2015,40(1):43−45.

    LIAN X J, GUO J J, LIU L Z. Study on attribution of starch infrared peak[J]. Grain Processing, 2015, 40(1): 43-45.
    [21]
    李光磊, 陈梦雪, 曾洁, 等. 韧化处理对甘薯淀粉分子结构的影响[J]. 食品工业科技,2016,37(17):106−110. [LI G L, CHEN M X, ZENG J, et al. Effect of annealing treatment on molecular structure of sweet potato starch[J]. Science and Technology of Food Industry,2016,37(17):106−110.

    LI G L, CHEN M X, ZENG J, et al. Effect of annealing treatment on molecular structure of sweet potato starch[J]. Science and Technology of Food Industry, 2016, 37(17): 106-110.
    [22]
    段春月. 板栗淀粉理化特性及老化机理研究[D]. 秦皇岛: 河北科技师范学院, 2021

    DUAN C Y. Study on physicochemical properties and aging mechanism of chestnut starch[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2021.
    [23]
    YU X R, WANG J, ZHANG J, et al. Physicochemical properties of starch isolated from bracken (Pteridium aquilinim) rhizome[J]. Journal of Food Science,2015,80(12):2717−2724. doi: 10.1111/1750-3841.13129
    [24]
    LI X, CHEN W, CHANG Q, et al. Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: A comparative study[J]. International Journal of Biological Macromolecules,2020,144(C):67−75.
    [25]
    杜双奎, 王华, 聂丽洁. 芸豆淀粉理化特性研究[J]. 中国粮油学报,2012,27(8):31−35. [DU S K, WANG H, NIE L J. Study on physical and chemical properties of kidney bean starch[J]. Journal of the Chinese Cereals and Oils Association,2012,27(8):31−35. doi: 10.3969/j.issn.1003-0174.2012.08.007

    DU S K, WANG H, NIE L J. Study on physical and chemical properties of kidney bean starch[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(8): 31-35. doi: 10.3969/j.issn.1003-0174.2012.08.007
    [26]
    曾绍校. 莲子淀粉品质特性的研究与应用[D]. 福州: 福建农林大学, 2007

    ZENG S, CHEN S J, ZHENG B D. Studies on qualitative characteristics of lotus-seed (Nelumbo nucifera Gaertn) starch and its apllication[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007.
    [27]
    廖夏云, 卢羽玲, 王芊, 等. 荔枝核淀粉理化性质及体外消化特性研究[J]. 食品研究与开发,2021,42(2):67−72. [LIAO X Y, LU Y L, WANG Q, et al. Study on physicochemical properties and in vitro digestibility of litchi kernel starch[J]. Food Research and Development,2021,42(2):67−72.

    LIAO X Y, LU Y L, WANG Q, et al. Study on physicochemical properties and in vitro digestibility of litchi kernel starch[J]. Food Research and Development, 2021, 42(2): 67-72.
    [28]
    YU S F, MA Y, MENAGER L, et al. Physicochemical properties of starch and flour from different rice cultivars[J]. Food and Bioprocess Technology,2012,5(2):626−637. doi: 10.1007/s11947-010-0330-8
    [29]
    LI J H, VASANTHAN T, ROSSNAGEL B, et al. Starch from hull-less barley: I. Granule morphology, composition and amylopectin structure[J]. Food Chemistry,2001,74(4):395−405. doi: 10.1016/S0308-8146(01)00246-1
    [30]
    FREDRIKSSON H, SILVERIO J, ANDERSSON R, et al. The influence of amylase and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J]. Carbohydrate Polymers,1998,35(3):119−134.
    [31]
    SASAKI T, YASUI T, MATSUKI J, et al. Effect of amylase content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds[J]. Cereal Chemistry,2000,77(1):58−63. doi: 10.1094/CCHEM.2000.77.1.58
    [32]
    CHEN L, YU C, MA Y, et al. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligprrhiza and Lemna minor[J]. Carbohydrate Polymers,2016,435:208−214.
    [33]
    钱建亚, 顾林. 三种常用淀粉糊化测定方法的比较[J]. 粮油加工,1999(4):42−46. [QIAN J Y, GU L. Comparison of three commonly used methods for determination of starch gelatinization[J]. Grain Processing,1999(4):42−46.

    QIAN J Y, GU L. Comparison of three commonly used methods for determination of starch gelatinization[J]. Grain Processing, 1999 (4): 42-46.
    [34]
    KIM S H, LEE B H, BAIK M Y, et al. Chemical structure and physical properties of mung bean starches isolated from domestic cultivars[J]. Journal of Food Science,2007,72(9):471−477. doi: 10.1111/j.1750-3841.2007.00525.x
    [35]
    SINGH J, MCCARTHY O J, SINGH H, et al. Morphological, thermal and rheological characterization of starch isolated from New Zealand KamoKamo (Cucubita pepo) fruit-A novel source[J]. Carbohydrate Polymers,2007,67(2):233−244. doi: 10.1016/j.carbpol.2006.05.021
    [36]
    王猛, 陈炫宏, 董雷超, 等. 挤压对豌豆淀粉的消化及理化特性评价[J]. 现代食品科技,2021,37(6):231−236. [WANG M, CHEN X H, DONG L C, et al. Effect of extrusion on the digestibility and viscosity properties of pea starch[J]. Modern Food Science and Technology,2021,37(6):231−236.

    WANG M, CHEN X H, DONG L C, et al. Effect of extrusion on the digestibility and viscosity properties of pea starch[J]. Modern Food Science and Technology, 2021, 37(6): 231-236.
    [37]
    LIU X X, LIU H M, FAN L Y, et al. Effect of various drying pretreatments on the structural and functional properties of starch isolated from Chinese yam (Dioscorea opposite Thumb.)[J]. International Journal of Biological Macromolecules,2020,153:1299−1309. doi: 10.1016/j.ijbiomac.2019.10.265
    [38]
    袁甜甜, 李奕霏, 叶发银, 等. 生姜淀粉的分子结构及理化特性[J]. 中国食品学报,2021,21(6):35−45. [YUAN T T, LI Y F, YE F Y, et al. Molecular structure and physicochemical properties of starches extracted from rhizomes of ginger (Zingiber officinale Roscoe)[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):35−45.

    YUAN T T, LI Y F, YE F Y, et al. Molecular structure and physicochemical properties of starches extracted from rhizomes of ginger (Zingiber officinale Roscoe)[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 35-45.
  • Related Articles

    [1]CHEN Linhong, FU Manqin, LU Shengyong, LI Lu, ZHONG Yujuan, LI Junxing, XIAO Gengsheng. Analysis of Quality and Volatile Components in Different Varieties of Pumpkin[J]. Science and Technology of Food Industry, 2024, 45(5): 223-233. DOI: 10.13386/j.issn1002-0306.2023040110
    [2]ZHOU Jia, SU Dan, WANG Zhixia, REN Hongtao, HUANG Yuan, YU Juan, LI Yali, ZHOU Hongjie. Analysis of Characteristic Volatile Components of Three Kinds of Black Tea Based on HS-SPME-GC-MS and Multivariate Statistics[J]. Science and Technology of Food Industry, 2023, 44(17): 342-350. DOI: 10.13386/j.issn1002-0306.2022110267
    [3]XU Qiang, JIANG Xiao, TAN Xili, YUAN Tianmeng, BIAN Minghong, ZENG Hong. Development of Apple Lycium barbarum Wine and Analysis of Volatile Components[J]. Science and Technology of Food Industry, 2023, 44(10): 151-159. DOI: 10.13386/j.issn1002-0306.2022070048
    [4]LIANG Shuilian, LV Daizhu, MA Chen, XIANG Tantan, ZHOU Jia, WANG Mingyue. Analysis of Volatile Components and Aroma Features of Banana ‘Guijiao No.1’ Fruit at Different Ripening Stages[J]. Science and Technology of Food Industry, 2021, 42(14): 99-106. DOI: 10.13386/j.issn1002-0306.2020120095
    [5]GAO Man-man, ZHANG Xu-pu, BAI Jun-yan, WU Rong-rong, CHENG Shu-mei. Component Analysis of Free Amino Acids,GABA and Volatile Aroma in Brown Rice Enzymes with Different Fermentation Processes[J]. Science and Technology of Food Industry, 2019, 40(23): 36-41. DOI: 10.13386/j.issn1002-0306.2019.23.006
    [6]WANG Hai-li, YANG Xiu-fang, KONG Jun-hao, CHENG Yu-liang, XIE Yun-fei, YAO Wei-rong, GUO Ya-hui, QIAN He. Analysis of Physical and Chemical Indicators and Aroma Components of Different Green Tea[J]. Science and Technology of Food Industry, 2019, 40(18): 217-223. DOI: 10.13386/j.issn1002-0306.2019.18.035
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]MENG Yi, ZHANG Yu-hua, JIANG Pei-hong, CHEN Dong-jie, ZHANG Ying-long, ZHANG Yong-mei. Analysis of volatile components of beef during storage[J]. Science and Technology of Food Industry, 2016, (16): 61-66. DOI: 10.13386/j.issn1002-0306.2016.16.003
    [9]LU Yan, DU Li-ping, XIAO Dong-guang. Analysis of volatile components of Lapsang Souchong black tea[J]. Science and Technology of Food Industry, 2015, (02): 57-60. DOI: 10.13386/j.issn1002-0306.2015.02.003
    [10]XU Yong-xia, JIANG Cheng-cheng, ZHANG Chao-min, LV Yan-fang, ZHU Dan-shi, LI Jian-rong. Analysis of volatile components in Hairtail by SPME-GC-MS[J]. Science and Technology of Food Industry, 2014, (19): 308-311. DOI: 10.13386/j.issn1002-0306.2014.19.058
  • Cited by

    Periodical cited type(5)

    1. 董洪宇,赵程澄,任战军,谢辉,王淑辉. 基于电子鼻和GC-MS技术探究不同林麝饲料的风味特征. 中国饲料. 2025(01): 117-125 .
    2. 屠大伟,陈小鸿,黄永强,胡霞,王烁超,刘文俊. 基于电子鼻、GC-MS结合感官评价分析丰都麻辣鸡调料风味特征. 食品与发酵工业. 2024(01): 293-301 .
    3. 付劭杰,毕金峰,曹风,刘梦,姜溪雨,陈宇航,陈文艺,刘璇. 非浓缩还原苹果汁贮藏期颗粒稳定性与果胶结构相关性研究. 核农学报. 2024(10): 1941-1950 .
    4. 屠大伟,翁盈秋,李青青,冯露萍,刘文俊. 火锅常用干辣椒品质及挥发性成分研究. 食品工业科技. 2023(16): 358-366 . 本站查看
    5. 张帅,吴水金,林宝妹,李海明,吴妙鸿,戴艺民. 福建6个香牙蕉品种(品系)后熟过程中挥发性风味成分的变化. 中国果树. 2023(11): 61-69+80 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (220) PDF downloads (21) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return