MI Jia, LUO Qing, LU Lu, et al. Pilot Extraction and Component Analysis of Fat-Soluble Substances from Lycium barbarum L. and the Preparation of Major Carotenoids Monomer[J]. Science and Technology of Food Industry, 2022, 43(11): 185−191. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090164.
Citation: MI Jia, LUO Qing, LU Lu, et al. Pilot Extraction and Component Analysis of Fat-Soluble Substances from Lycium barbarum L. and the Preparation of Major Carotenoids Monomer[J]. Science and Technology of Food Industry, 2022, 43(11): 185−191. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090164.

Pilot Extraction and Component Analysis of Fat-Soluble Substances from Lycium barbarum L. and the Preparation of Major Carotenoids Monomer

More Information
  • Received Date: September 12, 2021
  • Available Online: April 04, 2022
  • In order to study the pilot production process for supercritical CO2 extraction of fat-soluble substances from Lycium barbarum L., and for obtaining the preparation process of zeaxanthin dipalmitate monomer. The effect of pressure, temperature, time and co-solvent on the extraction yield of Lycium barbarum L. fat-soluble substances was studied, the orthogonal test was then used to optimize the extraction rate based on single factor experiment. The carotenoids and fatty acids in the fat-soluble substance of Lycium barbarum L. were analyzed by colorimetry, HPLC and GC-MS, and the zeaxanthin dipalmitate monomer was prepared by high performance preparative liquid chromatography. The results showed that the best pilot production process was that 15% ethanol was added, the extract temperature reached 50 ℃ and pressure reached 30 MPa, and extract for 1.5 h, when the yield and quality of fat-soluble substances were both considered. Under this process, the extraction rate of fat-soluble substances, unsaturated fatty acids and their proportion in total fatty acids, and the content of total carotenoids were relatively higher. While the extraction rate of fat-soluble substances was 8.55%, the content of unsaturated fatty acids was 80.958%, which accounts for 87.94% of the total fatty acid content, the content of total carotenoid and zeaxanthin dipalmitate was 37.64 mg·g−1 and 29.54 mg·g−1, respectively. The monomer of zeaxanthin dipalmitate with purity greater than 99% was prepared by pre-HPLC. In this study, the pilot-scale extraction process for supercritical CO2 extract of fat-soluble substance and the preparation conditions of the zeaxanthin dipalmitate monomer from Lycium barbarum L. were obtained, which provided a basis for the research, development and utilization of the fat-soluble substances of Lycium barbarum L..
  • [1]
    WANG C C, CHANG S C, INBARAJ B S, et al. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity[J]. Food Chemistry,2010,120(1):184−192. doi: 10.1016/j.foodchem.2009.10.005
    [2]
    KIM H P, KIM S Y, LEE E J, et al. Zeaxanthin dipalmitate from Lycium chinese has hepatoprotective activity[J]. Research Communications in Molecular Pathology and Pharmacology,1997,97(3):301−314.
    [3]
    KIM H P, LEE E J, KIM Y C, et al. Zeaxanthin dipalmitate from Lycium chinense fruit reduces experimentally induced hepatic fibrosis in rats[J]. Biological & Pharmaceutical Bulletin,2002,25(3):390−392.
    [4]
    LI J J, GAO H, LV Y. Zeaxanthin dipalmitate alleviates hepatic injury induced by superimposed chronic hepatitis B and non-alcoholic steatohepatitis in non-obese mice[J]. Journal of Asian Natural Products Research,2017,19(9):910. doi: 10.1080/10286020.2017.1349759
    [5]
    WOJDYŁO A, NOWICKA P, BĄBELEWSKI P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties[J]. Journal of Functional Foods,2018,48:632−642. doi: 10.1016/j.jff.2018.07.061
    [6]
    周建中, 高蕾, 王伟, 等. 不同提取方法对枸杞籽油品质的影响[J]. 食品工业科技,2012,33(2):110−111. [ZHOU J Z, GAO L, WANG W, et al. The analysis of Lycium seed oil by various extraction process[J]. Science and Technology of Food Industry,2012,33(2):110−111.
    [7]
    李国梁, 史俊友, 孙志伟, 等. 超临界CO2萃取柴达木枸杞籽油工艺与籽油成分研究[J]. 食品工业科技,2010,31(5):257−259. [LI G L, SHI J Y, SUN Z W, et al. Study on the supercritical CO2 extraction techniques and composition of seed oil from Qaidam Basin Lycium barbarum[J]. Science and Technology of Food Industry,2010,31(5):257−259.
    [8]
    张晓图, 杜晨红, 丁小娟, 等. 多不饱和脂肪酸的生物学功能及其在动物生产中的应用[J]. 动物营养学报,2017,29(9):3059−3067. [ZHANG X T, DU C H, DING X J, et al. Biological funcyions of polyunsaturated fatty acids and its application in animal production[J]. Chinese Journal of Animal Nutrition,2017,29(9):3059−3067. doi: 10.3969/j.issn.1006-267x.2017.09.006
    [9]
    SAHENA F, ZAIDUL I S M, JINAP S, et al. Application of supercritical CO2 in lipid extraction–A review[J]. Journal of Food Engineering,2009,95(2):240−253. doi: 10.1016/j.jfoodeng.2009.06.026
    [10]
    ZAGHDOUDI K, FRAMBOISIER X, CÉLINE F, et al. Response surface methodology applied to supercritical fluid extraction (SFE) of carotenoids from persimmon (Diospyros kaki L.)[J]. Food Chemistry,2016,208(208):209−219.
    [11]
    CHRONOPOULOU L, BOSCO C D, CAPRIO F D, et al. Extraction of carotenoids and fat-soluble vitamins from Tetradesmus obliquus microalgae: An optimized approach by using supercritical CO2[J]. Molecules,2019,24(14):2581. doi: 10.3390/molecules24142581
    [12]
    SALAMATIN A A. Supercritical fluid extraction of the seed fatty oil: Sensitivity to the solute axial dispersion[J]. Industrial & Engineering Chemistry Research,2020,59(40):18126−18138.
    [13]
    GUO L L, JUN Y S, YOU R S, et al. Supercritical CO2 cell breaking extraction of Lycium barbarum seed oil and determination of its chemical composition by HPLC/APCI/MS and antioxidant activity[J]. LWT-Food Science and Technology,2011,44(4):1172−1178. doi: 10.1016/j.lwt.2010.10.012
    [14]
    周学义. 从枸杞、枸杞渣粕中提取玉米黄质的方法: 201110406665.9 [P]. 2013-06-05.

    ZHOU X Y. Extraction of zeaxanthin from Lycium barbarum and Lycium barbarum residue: 201110406665.9 [P]. 2013-06-05.
    [15]
    牛东玲, 安绍芳. 一种枸杞子脂溶性色素的制备方法: 201510196410.2 [P]. 2015-09-09.

    NIU D L, AN S F. A preparation method of fat soluble pigment from Lycium barbarum: 201510196410.2 [P]. 2015-09-09.
    [16]
    李越鲲, 米佳, 闫亚美, 等. 不同产地宁夏枸杞主要化学成分分析[J]. 食品工业科技,2017(21):293−295, 336. [LI Y K, MI J, YAN Y M, et al. Main chemical constitues anlysis of Lycium barbarum L. from different regions[J]. Science and Technology of Food Industry,2017(21):293−295, 336.
    [17]
    闫亚美, 曹有龙, 米佳, 等. 一种提取枸杞中的玉米黄质及其衍生物的方法: 201610768879.3 [P]. 2018-07-18.

    YAN Y M, CAO Y L, MI J, et al. A method for extracting zeaxanthin and its derivatives from Lycium barbarum: 201610768879.3 [P]. 2018-07-18.
    [18]
    米佳, 禄璐, 戴国礼, 等. 枸杞色泽与其类胡萝卜素含量和组成的相关性[J]. 食品科学,2018,39(5):81−86. [MI J, LU L, DAI G L, et al. Correlations between skin color and carotenoid contents in wolfberry[J]. Food Science,2018,39(5):81−86. doi: 10.7506/spkx1002-6630-201805013
    [19]
    曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 中国轻工业出版社, 2007.

    CAO J K, JIANG W B, ZHAO Y M. Guidance of post-harvest physiological and biochemical experiments of fruits and vegetables[M]. China Light Industry Press, 2007.
    [20]
    米佳, 杨雪莲, 禄璐, 等. 枸杞蜂花粉多糖超声波提取工艺优化及抗氧化活性分析[J]. 食品科学技术学报,2020,38(1):97−103. [MI J, YANG X L, LU L, et al. Ultrasound-assisted extraction optimization and analysis of antioxidant activities of polysaccharides from bee pollen of wolfberry[J]. Journal of Food Science and Technology,2020,38(1):97−103. doi: 10.3969/j.issn.2095-6002.2020.01.013
    [21]
    KHAJEH M. Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design[J]. The Journal of Supercritical Fluids,2011,55(3):944−948. doi: 10.1016/j.supflu.2010.10.017
    [22]
    黄忆真, 李杰, 谈满良, 等. 西兰花籽油超临界CO2萃取工艺及脂肪酸组成分析[J]. 中国油脂,2018,43(12):8−11, 24. [HUANG Y Z, LI J, TAN M L, et al. Supercritical CO2 extraction of broccoli seed oil and its fatty acid composition[J]. China Oils and Fats,2018,43(12):8−11, 24.
    [23]
    PRADO J M, VEGGI P C, MEIRELES M A. Extraction methods for obtaining carotenoids from vegetables–review[J]. Current Analytical Chemistry,2014,10(1):29−66.
    [24]
    LIMA M D A, CHARALAMPOPOULOS D, CHATZIFRAGKOU A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels[J]. The Journal of Supercritical Fluids,2018,133(1):94−102.
    [25]
    陆少兰, 谭传波, 郝泽金, 等. 微波预处理-超临界CO2萃取牡丹籽油的工艺研究[J]. 中国油脂,2015,40(5):9−13. [LU S L, TAN C B, HAO J Z, et al. Microwave pretreatment-supercritical carbon dioxide extraction of peony seed oil[J]. China Oils and Fats,2015,40(5):9−13. doi: 10.3969/j.issn.1003-7969.2015.05.003
    [26]
    汤丽华, 马桂娟. 宁夏枸杞籽油的化学成分分析[J]. 现代食品,2018(17):114−118. [TANG L H, MA G J, et al. Chemical composition analysis of Lycium barbarum seeds oil[J]. Modern Food,2018(17):114−118.
    [27]
    MANNINEN P, PAKARINEN J, KALLIO H. Large-scale supercritical carbon dioxide extraction and supercritical carbon dioxide countercurrent extraction of cloudberry seed oil[J]. Journal of Agricultural and Food Chemistry,1997,45(7):2533−2538. doi: 10.1021/jf9700440
    [28]
    ROY B C, GOTO M, HIROSE T. Temperature and pressure effects on supercritical CO2 extraction of tomato seed oil[J]. International Journal of Food Science and Technology,1996,31:137−141. doi: 10.1111/j.1365-2621.1996.325-27.x
    [29]
    HAMMAM H, SODERBERG I, SIVIK B. Physical properties of butter oil fractions obtained by supercritical carbon dioxide extraction[J]. Fat Science and Technology,1991,93(10):374−378.
  • Related Articles

    [1]CHEN Fangxue, QIU Wenxing, SHEN Lingwei, LI Dongsheng, QIAO Yu, WU Wenjin, XIONG Guangquan, WANG Lan, DING Anzi, LI Xin, SHI Liu. Formation of Volatile Flavor Compounds and Changes in Fat Oxidation in Blunt-snout Bream by Traditional Sun-drying and Shade-drying[J]. Science and Technology of Food Industry, 2023, 44(14): 36-45. DOI: 10.13386/j.issn1002-0306.2022070072
    [2]XU Ruoyuan, XUE Jiyuan, WANG Min, ZHAO Xucui, SHEN Hui, GAO Sumin, MENG Xiangren, WANG Hengpeng. Effects of Different Thermal Treatments on Tenderness and Volatile Flavor Compounds of Beef[J]. Science and Technology of Food Industry, 2023, 44(4): 77-87. DOI: 10.13386/j.issn1002-0306.2022050168
    [3]LIU Dongao, XIE Shuangyu, LI Zhi, LI Tianyi, PENG Yuan, SUN Bo. Analysis on the Difference of the Volatile Flavor Compounds of Northeast Farmhouse Soybean Paste with Different Salt Concentrations[J]. Science and Technology of Food Industry, 2022, 43(19): 356-363. DOI: 10.13386/j.issn1002-0306.2022010003
    [4]LIU Yang, HUANG Jia, JIA Hongfeng, FANG Xiaowei, LONG Juyi, LAN Ning. Effects of Different Cooking Methods on Volatile Flavor Compounds in Beef[J]. Science and Technology of Food Industry, 2022, 43(10): 305-313. DOI: 10.13386/j.issn1002-0306.2021080198
    [5]LIU Guomin, QIN Weizhi, WEI Rongchang, YI Ruolan, LIAO Yujiao, ZHENG Xu, CHE Jianglü. Comparative Analysis of Volatile Flavor Compounds in Different Varieties (Lines) of Potatoes[J]. Science and Technology of Food Industry, 2022, 43(9): 284-292. DOI: 10.13386/j.issn1002-0306.2021080141
    [6]LING Shengnan, LIU Teyuan, CHEN Xueye, WANG Hongli, WANG Xichang, SHI Wenzheng. Effect of Different Thawing Methods on the Freshness and Volatile Flavor Compounds of Anchovy (Engraulis encrasicholus)[J]. Science and Technology of Food Industry, 2022, 43(5): 322-330. DOI: 10.13386/j.issn1002-0306.2021050273
    [7]JIANG Feng, ZHENG Xinru, ZHOU Changyi, JIANG Xiaoying, LIN Weiyan, LIU Yu, SU Wenjin, SU Guocheng. Effect of Lactobacillus reuteri on Volatile Flavor Compounds of Fermented Surimi[J]. Science and Technology of Food Industry, 2021, 42(12): 240-245. DOI: 10.13386/j.issn1002-0306.2020070234
    [8]XU Zihan, SHU Chang, LUO Zhongwei, LV Zhenzhen, ZHANG Wen, PAN Zhiming. Optimization of the HS-SPME-GC-MS Technique for Determination of Volatile Flavor Compounds in Pork by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(6): 252-259. DOI: 10.13386/j.issn1002-0306.2020050295
    [9]ZHU Li-jie, SHI Yue, LIU Xiu-ying, WANG Bo, TANG Ming-li, LIU He, HE Yu-tang, MA Tao. Solid phase micro- extraction combined with gas chromatography- mass spectrometry analysis of volatile flavor compounds of corn pancake[J]. Science and Technology of Food Industry, 2016, (10): 102-105. DOI: 10.13386/j.issn1002-0306.2016.10.011
    [10]YANG Li-ping, YI Shu-min, LI Xue-peng, XU Yong-xia, LI Ying-chang, LI Jian-rong. Volatile flavor compounds changing in dried- seasoned squid ( Dosidicus gigas) during the processing[J]. Science and Technology of Food Industry, 2015, (11): 265-272. DOI: 10.13386/j.issn1002-0306.2015.11.046
  • Cited by

    Periodical cited type(10)

    1. 韩勇. 饲料用连翘叶不同提取物体外抗炎抑菌活性的比较研究. 饲料工业. 2024(07): 86-92 .
    2. 滕文龙,吴永娜,王德富,牛颜冰. 连翘叶茶对肝癌细胞增殖和迁移功能的影响及其作用机制. 生物技术通报. 2024(04): 287-296 .
    3. 周孝琼,张海燕,郭水灵,王萌萌,陆元安,周华林,王华. 百香果果壳提取物对热应激小鼠的保护作用. 中国兽医杂志. 2024(05): 118-124 .
    4. 王中一,张治杰,姚亚乐,陈国雯,马小燕,安志霞,范碧玥,邱山桐,王萌. 连翘叶乙醇提取物对APAP诱导肝损伤小鼠氧化应激及炎症因子的影响. 甘肃农业大学学报. 2024(04): 1-8 .
    5. 陈星蕊,汤瑜晨,庄家蝶,黄亚南,钱心悦,张博涛,王梦苒,胡云飞. 连翘不同部位化学成分及药理作用研究进展. 甘肃中医药大学学报. 2024(06): 53-67 .
    6. 王学方,陈玲,宁二娟,归荣,王伟,范毅,王学兵,李晓. 连翘叶中7种成分的抗氧化活性研究. 饲料研究. 2023(02): 94-99 .
    7. 栗粟,陈红跃,樊艳,王灿,于洋,梁栋,申鹏,张小路. 连翘提取物对实验性自身免疫性甲状腺炎大鼠甲状腺损伤的影响. 中国免疫学杂志. 2023(05): 978-982 .
    8. 杨钰昆,杨岚清,梁小祥,王小敏. 连翘叶风味爆珠的制备工艺研究. 食品科技. 2022(01): 286-292 .
    9. 范碧玥,王萌,潘阳阳,安志霞,马小燕,叶得河,王桂荣. 连翘叶酶-醇提取物抗药物性肝损伤作用研究. 西北农林科技大学学报(自然科学版). 2022(10): 23-33 .
    10. 李欧,刘银,张晓燕,高小康. 十堰地区连翘叶提取物的抑菌和抗氧化活性研究. 饲料研究. 2021(23): 88-93 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return