LIU Dezhi, WANG Weihao, QUAN Zhigang, et al. Study on Structure Characterization and Anti Digestion Properties of Mung Bean Resistant Dextrin[J]. Science and Technology of Food Industry, 2022, 43(11): 119−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090154.
Citation: LIU Dezhi, WANG Weihao, QUAN Zhigang, et al. Study on Structure Characterization and Anti Digestion Properties of Mung Bean Resistant Dextrin[J]. Science and Technology of Food Industry, 2022, 43(11): 119−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090154.

Study on Structure Characterization and Anti Digestion Properties of Mung Bean Resistant Dextrin

More Information
  • Received Date: September 12, 2021
  • Available Online: March 30, 2022
  • In order to explore the structural characterization and anti-digestion characteristics of mung bean resistant dextrin, mung bean starch was used as raw material to prepare mung bean resistant dextrin by acid heat method. Its surface morphology, crystal form, polarized light, functional groups and glycosidic bonds were characterized, and its anti-digestion characteristics were explored by simulating in vitro digestion. The results showed that compared with mung bean starch, the structure of mung bean resistant dextrin was fragmented with different sizes and irregular shapes. The polarized light cross disappeared, and the chemical groups were similar. The peak positions of each functional group remained unchanged and no new peaks were generated. The crystal structure was amorphous, and the molecular weight MW of molecular degradation was 5.24×103 g/mol. The glycosidic bond was broken and a new digestion-resistant glycosidic bond was generated. The simulated in vitro digestion experiment showed that mung bean resistant dextrin had strong anti-digestion ability, and the anti-digestion content was 92.28%. This experiment aims to provide theoretical and data support for the development of functional dietary fiber.
  • [1]
    刘婷婷, 吴玉莹, 秦宇婷, 等. 绿豆淀粉工艺废水中蛋白质的功能性质[J]. 食品科学,2017,38(5):104−110. [LIU T T, WU Y Y, QIN Y T, et al. Functional properties of proteins in mung bean starch process wastewater[J]. Food Science,2017,38(5):104−110. doi: 10.7506/spkx1002-6630-201705017
    [2]
    刘紫薇, 李欣, 高菲, 等. 煮制时间对绿豆中淀粉性质的影响及相关性分析[J]. 包装工程,2021,42(13):93−99. [LIU Z W, LI X, GAO F, et al. Effect of cooking time on starch properties in mung beans and correlation analysis[J]. Packaging Engineering,2021,42(13):93−99.
    [3]
    张海均, 贾冬英, 姚开. 绿豆的营养与保健功能研究进展[J]. 食品与发酵科技,2011,48(1):7−10. [ZHANG H J, JIA D Y, YAO K. Research progress of mung bean nutrition and health care function[J]. Food and Fermentation Technology,2011,48(1):7−10.
    [4]
    TORAYA A R, SEGURA C M, CHEL G L, et al. Some nutritional characteristics of enzymatically resistant maltodextrin from cassava (Manihot esculenta Crantz) starch[J]. Plant Foods for Human Nutrition,2017,72(2):145−149.
    [5]
    黄政, 孙江文, 徐勇, 等. 抗性糊精的研究与应用进展[J]. 海南师范大学学报(自然科学版),2018,31(4):418−427. [HUANG Z, SUN J W, XU Y, et al. Research and application progress of resistant dextrin[J]. Journal of Hainan Normal University (Natural Science Edition),2018,31(4):418−427.
    [6]
    徐仰丽, 刘亚伟, 任伟豪. 抗性糊精的研究进展[J]. 河南工业大学学报(自然科学版),2008,29(4):67−71. [XU Y L, LIU Y W, REN W H. Research progress of resistant dextrin[J]. Journal of Henan University of Technology (Natural Science Edition),2008,29(4):67−71.
    [7]
    LAETITIA G D, LI S G, POCHAT M, et al. Effects of NUTRIOSE dietary fiber supplementation on body weight, body composition, energy intake, and hunger in overweight men[J]. International Journal of Food Sciences amd Nutrition,2011,62(6):628−635. doi: 10.3109/09637486.2011.569492
    [8]
    HU Q, LU Y, HU F, et al. Resistant dextrin reduces obesity and attenuates adipose tissue inflammation in high-fat diet-fed mice[J]. International Journal of Medical Sciences,2020,17(17):2611−2621. doi: 10.7150/ijms.45723
    [9]
    ASTINA J, SAPWAROBOL S. Attenuation of glycaemic and insulin responses following tapioca resistant maltodextrin consumption in healthy subjects: A randomised cross-over controlled trial[J]. Journal of Nutritional Science,2020(9):e29.
    [10]
    顾品品, 张燕萍. 不同处理方式对红香母芋抗性糊精性质的影响[J]. 食品研究与开发,2020,41(15):30−35. [GU P P, ZHANG Y P. Effects of different treatment methods on the properties of resistant dextrin in hongxiangmu taro[J]. Food Research and Development,2020,41(15):30−35.
    [11]
    JOCHYM K K, NEBESNY E. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry[J]. Carbohydrate Polymers,2017(172):152−158.
    [12]
    RENATA B, KAMILA J, KATARZYN S, et al. The effect of citric acid-modified enzyme-resistant dextrin on growth and metabolism of selected strains of probiotic and other intestinal bacteria[J]. Journal of Functional Foods,2010,2(2):126−133. doi: 10.1016/j.jff.2010.03.002
    [13]
    陈磊. 功能淀粉糊精的制备及其应用研究[D]. 广州: 华南理工大学, 2014.

    CHEN L. Preparation and application of functional starch dextrin[D]. Guangzhou: South China University of Technology, 2014.
    [14]
    张颖, 朱晓雯, 钱和, 等. 高纯度难消化糊精的制备工艺及其特性研究[J]. 食品工业科技,2015,36(10):293−296. [ZHANG Y, ZHU X W, QIAN H, et al. Study on preparation process and characteristics of high purity indigestible dextrin[J]. Food Industry Science and Technology,2015,36(10):293−296.
    [15]
    张婷, 李佳瑶, 安双双, 等. 高粱抗性糊精的制备工艺优化及结构表征[J]. 食品科技,2020,342(4):238−243. [ZHANG T, LI J Y, AN S S, et al. Preparation process optimization and structure characterization of sorghum resistant dextrin[J]. Food Science and Technology,2020,342(4):238−243.
    [16]
    ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46(2):33−50.
    [17]
    戚明明, 彭慧慧, 宋佳琳, 等. 挤压和酶解对豌豆粉淀粉体外消化率、蛋白质结构和流变特性的影响[J/OL]. 食品科学: 1−11 [2021-07-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210205.1756.085.html.

    QI M M, PENG H H, SONG J L, et al. Effects of extrusion and enzymatic hydrolysis on in vitro digestibility, protein structure and rheological properties of pea powder starch[J/OL]. Food Science: 1−11 [2021-07-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210205.1756.085.html.
    [18]
    ZHEN Y H, ZHANG T, JIANG B, et al. Purification and characterization of resistant dextrin[J]. Foods,2021,10(1):185. doi: 10.3390/foods10010185
    [19]
    苏会波, 林海龙. 难消化糊精的研究进展[J]. 食品与生物技术学报,2014,33(1):1−7. [SU H B, LIN H L. Research progress of indigestible dextrin[J]. Journal of Food and Biotechnology,2014,33(1):1−7.
    [20]
    ZENG F, ZHU S, CHEN F, et al. Effect of different drying methods on the structure and digestibility of short chain amylose crystals[J]. Food Hydrocolloids,2016,52:721−731. doi: 10.1016/j.foodhyd.2015.08.012
    [21]
    FANG K, HE W, JIANG Y, et al. Preparation, characterization and physicochemical properties of cassava starch-ferulic acid complexes by mechanical activation[J]. International Journal of Biological Macromolecules,2020,160:482−488. doi: 10.1016/j.ijbiomac.2020.05.213
    [22]
    李良玉, 刘晚霞, 李朝阳, 等. 绿豆抗性糊精的高效纯化技术及分子特性研究[J]. 中国食品学报,2020,20(10):134−141. [LI L Y, LIU W X, LI C Y, et al. High efficiency purification technology and molecular characteristics of mung bean resist-ant dextrin[J]. Chinese Journal of Food,2020,20(10):134−141.
    [23]
    MAO H J, CHEN Z J, LI J, et al. Structural comparisons of pyrodextrins during thermal degradation process: The role of hydrochloric acid[J]. Food Chemistry,2021(349):129174.
    [24]
    ATROUS H, BENBETTAIEB N, HOSNI F, et al. Effect of γ-radiation on free radicals formation, structural changes and functional properties of wheat starch[J]. International Journal of Biological Macromolecules,2015,80:64−76. doi: 10.1016/j.ijbiomac.2015.06.014
    [25]
    杨亚鸽, 刘洁, 刘亚伟. 木薯淀粉制备热转化糊精及特性研究[J/OL]. 河南工业大学学报(自然科学版): 1−12 [2021-07-12]. http://kns.cnki.net/kcms/detail/41.1378.N.20210611.1501.002.html.

    YANG Y G, LIU J, LIU Y W. Preparation and characteristics of thermal conversion dextrin from cassava starch[J/OL]. Journal of Henan University of Technology (Natural Science Edition): 1−12 [2021-07-12]. http://kns.cnki.net/kcms/detail/41.1378.N.20210611.1501.002.html.
    [26]
    WANPHEN W, ROBERT C W, SUTTIPUN K, et al. Pyrodextrin from waxy and normal tapioca starches: Physicochemical properties[J]. Food Hydrocolloids,2019,104(C):105745.
    [27]
    WANG H S, ZAINABU M, ZHENG R N. Characterization of microwave-synthesized polydextrose and its radical-scavenging activity[J]. Taylor and Francis,2018,37(1):44−56.
    [28]
    JOANNA T B, WIOLETTA B, ARTUR S, et al. Molecular and supermolecular structure of co-mmercial pyrodextrins[J]. Journal of Food Science,2016,81(7-9):C2135.
    [29]
    大隈一裕, 西端豊秀. 水溶性膳食纤维Fibersol-2[J]. 食品科学,2004(4):218−220. [OKUMA Y Y, XIDUAN C X. Water soluble dietary fiber fibersol-2[J]. Food Science,2004(4):218−220.
    [30]
    BAI Y, CAI L, DOUTCH J, et al. Structural changes from native waxy maize starch granules to cold-water-soluble pyrodextrin during thermal treatment[J]. Journal of Agricultural and Food Chemistry,2014,62(18):4186−4194. doi: 10.1021/jf5000858
    [31]
    徐佩琳. 酸热法和微波预处理—酶法制备山药抗性糊精及其特性研究[D]. 合肥: 合肥工业大学, 2018.

    XU P L. Preparation and characterization of yam resistant dextrin by acid thermal method and microwave pretreatment enzyme method[D]. Hefei: Hefei University of Technology, 2018.
    [32]
    张晶. 酯化麦芽糊精的制备及其特性研究[D]. 郑州: 河南工业大学, 2010.

    ZHANG J. Preparation and characterization of esterified maltodextrin[D]. Zhengzhou: Henan University of Technology, 2010.
    [33]
    武小辉. 麦芽糊精的交联聚合技术及其特性研究[D]. 郑州: 河南工业大学, 2016.

    WU X H. Study on cross-linking polymerization technology and characteristics of maltodextrin[D]. Zhengzhou: Henan University of Technology, 2016.
    [34]
    BAI Y J, SHI Y C. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy[J]. Carbohydrate Polymers,2016,151:426−433. doi: 10.1016/j.carbpol.2016.05.058
    [35]
    WEIL W, WEIL R C, KEAWSOMPONG S, et al. Pyrodextrins from waxy and normal tapioca starches: Molecular structure and in vitro digestibility[J]. Carbohydrate Polymers,2021,252(11):117140.
    [36]
    郭峰, 陈磊, 叶晓蕾, 等. 不同酶水解对抗性糊精消化性的影响研究[J]. 食品工程,2016(1):28−30, 45. [GUO F, CHEN L, YE X L, et al. Study on the effect of different enzymatic hydrolysis on the digestibility of anti dextrin[J]. Food Engineering,2016(1):28−30, 45. doi: 10.3969/j.issn.1673-6044.2016.01.009
    [37]
    HUANG Z, WANG J J, CHEN Y, et al. Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities[J]. Food Chemistry,2020,317(C):126542.
  • Related Articles

    [1]AN Yu, ZHOU Xinyu, WANG Ying, ZUO Zhaohang, SUN Wei, ZHANG Naidan, PANG Weiqiao. Effects of Ultrasound Treatment on Physicochemical Properties and Antioxidant Function of Adzuki Bean Protein[J]. Science and Technology of Food Industry, 2022, 43(16): 105-110. DOI: 10.13386/j.issn1002-0306.2022010266
    [2]WANG Yun-xiang, GU Si-tong, ZUO Jin-hua, GAO Li-pu, WANG Qing, JIANG Ai-li. Effect of Salicylic Acid Treatment on Postharvest Quality and Antioxidant Capacity of Summer Squash[J]. Science and Technology of Food Industry, 2018, 39(19): 286-290,308. DOI: 10.13386/j.issn1002-0306.2018.19.050
    [3]FANG Fang. Effect of Steam Explosion Treatment on Amaranth Seeds Antioxidant Capacity[J]. Science and Technology of Food Industry, 2018, 39(15): 21-25,30. DOI: 10.13386/j.issn1002-0306.2018.15.005
    [4]GU Wei, XU Yong- jian. Preparation of Hippocampus ACE inhibitory peptide and determination of antioxidant capacity[J]. Science and Technology of Food Industry, 2016, (05): 201-206. DOI: 10.13386/j.issn1002-0306.2016.05.031
    [5]XU Gui-hua, LIU Dong-hong, LI Bo, CHEN Jian-chu, YE Xing-qian. Study on composition of flavonoids and antioxidant capacity of citrus peels[J]. Science and Technology of Food Industry, 2015, (16): 114-117. DOI: 10.13386/j.issn1002-0306.2015.16.015
    [6]MA Cheng-yuan, HAN Yan-qing, XU Bao-cai, LI Xing-min, DAI Rui-tong. Effect of tomato paste on sensory properties and antioxidant capacity of western brined ham[J]. Science and Technology of Food Industry, 2015, (10): 148-152. DOI: 10.13386/j.issn1002-0306.2015.10.022
    [7]XIE Li-yuan, GAN Bing-cheng, PENG Wei-hong, HUANG Zhong-qian, TAN Wei. Analysis of antioxidant substances and antioxidant capacity of submerged fermentation product of Ganoderma Lucidum[J]. Science and Technology of Food Industry, 2015, (02): 105-109. DOI: 10.13386/j.issn1002-0306.2015.02.014
    [8]MA Jin-jin, WANG Xiao-yu, ZHANG Juan, SONG Xi-zi, LI Xiao-jiao, SUN Xiang-yu, TIAN Cheng-rui. Analysis and comparison of polyphenols composition and antioxidant capacity in three kinds of vinegar[J]. Science and Technology of Food Industry, 2014, (24): 128-131. DOI: 10.13386/j.issn1002-0306.2014.24.018
    [9]HU Tai-chao, TAO Rong-shan, LI Qing-jie, ZHANG Jing, SU Feng-yan, WANG Yan-mei, WANG Quan-kai. Study on the preparation process and the antioxidant capacity of deer blood polypeptide[J]. Science and Technology of Food Industry, 2014, (17): 107-110. DOI: 10.13386/j.issn1002-0306.2014.17.014
    [10]NI Rong-rong, ZUO Qian, LI Wan-ping, ZHU Jian-jin. Effect of tea polyphenols on lactation performance and antioxidant capacity in rats[J]. Science and Technology of Food Industry, 2014, (16): 337-341. DOI: 10.13386/j.issn1002-0306.2014.16.065
  • Cited by

    Periodical cited type(6)

    1. 吴思邈,蒋浩源,安莹,张丽冕,李彭. L-赖氨酸功能化纤维素对模拟苹果汁中铅的吸附特性研究. 食品工业科技. 2024(08): 97-109 . 本站查看
    2. 张琳,马悦,张悦,陆辉杰,陈子琨,刘宏生. 科教融汇及思政育人新路径——食品包装技术课程创新实验设计. 农业工程. 2024(06): 133-137 .
    3. 唐蓉萍,李秀壮,朱一剑,吴贝贝,李树龙. 玉米秸秆高值化利用研究进展. 南方农业. 2024(21): 143-146 .
    4. 朱颍,李力,孙冰华,马森. 淀粉可食性膜性能的研究进展. 粮食科技与经济. 2024(06): 94-102 .
    5. 曾仪雯,周恩弛,黄高瓴,冯静秋,李丹,张春红. 可食性膜在食品保鲜中的应用现状及研究进展. 保鲜与加工. 2023(04): 62-67 .
    6. 任晚霞,宋亭,张丽媛. 纳米纤维素-淀粉膜对草莓保鲜效果的影响. 中国食品添加剂. 2023(11): 6-11 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return