Citation: | ZHANG Yinping, XU Yan, ZHU Shuangjie, et al. Research on Intelligent Grading System of Imperial Chrysanthemum Based on Machine Vision[J]. Science and Technology of Food Industry, 2022, 43(5): 13−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090136. |
[1] |
国家药典委员会. 中华人民共和国药典一部[M]. 北京: 中国医药科技出版社, 2015: 310.
National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Pharmaceutical Science and Technology Press, 2015: 310.
|
[2] |
周跃东, 杨玉著. 安徽庐江: 金丝皇菊开出“致富花”[J]. 中国食品, 2020(22): 81.
ZHOU Yuedong, YANG Yuzhu, Lujiang, Anhui Province: Imperial chrysanthemum opens the “flower of getting rich”[J]. China Food, 2020(22): 81.
|
[3] |
戴应和, 龙小琴, 田桂华, 等. 铜仁地区金丝皇菊种植及加工技术——以印江县为例[J]. 亚太传统医药,2020,16(9):71−74. [DAI Yinghe, LONG Xiaoqin, TIAN Guihua, et al. Planting and processing technology of Imperial chrysanthemum in Tongren Area-Taking Yinjiang County as an example[J]. Asia Pacific traditional medicine,2020,16(9):71−74.
|
[4] |
孔凡玉, 庞雪莉, 曹建敏, 等. 金丝皇菊——不仅仅是茶饮[J]. 生命世界,2020(8):26−29. [KONG Fanyu, PANG Xueli, CAO Jianmin, et al. Imperial chrysanthemum-not just tea[J]. Life World,2020(8):26−29.
|
[5] |
李曦, 郭灵安, 雷欣宇, 等. 金丝皇菊的营养成分分析与评价[J]. 现代食品科技,2019,35(11):237−241,260. [LI Xi, GUO Ling'an, LEI Xinyu, et al. Analysis and evaluation of nutritional components of Imperial chrysanthemum[J]. Modern Food Science and Technology,2019,35(11):237−241,260.
|
[6] |
熊金, 彭勇, 余兴华. 机器视觉在烟草薄膜识别中的应用[J]. 科学技术创新,2021(25):44−45. [XIONG Jin, PENG Yong, YU Xinghua. Application of machine vision in tobacco film recognition[J]. Science and Technology Innovation,2021(25):44−45. doi: 10.3969/j.issn.1673-1328.2021.25.021
|
[7] |
杨再雄, 吴恋, 左建, 等. 基于人工智能的农产水果分级检测技术综述[J]. 科技创新与应用,2021,11(22):41−43. [YANG Zaixiong, WU Lian, ZUO Jian, et al. Overview of grading and detection technology of agricultural fruits based on artificial intelligence[J]. Scientific and Technological Innovation and Application,2021,11(22):41−43.
|
[8] |
李志伟, 霍静琦, 蒿晟昆. 机器视觉技术在农业智能装备中应用的研究进展[J]. 当代农机,2021(7):5−7. [LI Zhiwei, HUO Jingqi, HAO Shengkun. Research progress of machine vision technology in agricultural intelligent equipment[J]. Contemporary Agricultural Machinery,2021(7):5−7.
|
[9] |
KUMA M K P, PARKAVI A. Quality grading of the fruits and vegetables using image processing techniques and machine learning: A review[J]. Advances in Communication Systems and Networks,2020:477−486.
|
[10] |
LAL S, BEHERA S K, SETHY P K, et al. Identification and counting of mature apple fruit based on BP feed forward neural network[C]//2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). IEEE, 2017: 361−368.
|
[11] |
MESA A R, CHIANG J Y. Multi-input deep learning model with RGB and hyperspectral imaging for banana grading[J]. Agriculture,2021,11(8):687. doi: 10.3390/agriculture11080687
|
[12] |
BEHERA S, MAHAPATRA A, RATH A, et al. Classification & grading of tomatoes using image processing techniques[J]. International Journal of Innovative Technology and Exploring Engineering,2019,8:545.
|
[13] |
李倩倩. 基于计算机视觉的猕猴桃无损检测与自动分级研究[D]. 合肥: 安徽农业大学, 2020.
LI Qianqian. Research on nondestructive testing and automatic grading of kiwifruit based on computer vision[D]. Hefei: Anhui Agricultural University, 2020.
|
[14] |
汪威, 刘亚川, 吕斌, 等. 一种去柄鲜香菇视觉分级系统设计[J]. 食品与机械,2021,37(3):105−111. [WANG Wei, LIU Yachuan, LV Bin, et al. Design of a visual grading system for fresh Lentinus edodes[J]. Food and Machinery,2021,37(3):105−111.
|
[15] |
钱柏英, 刘志刚. 基于视觉体验的双孢蘑菇在线自动分级设计与试验[J]. 中国食用菌,2021,40(2):169−172. [QIAN Baiying, LIU Zhigang. Design and experiment of online automatic classification of Agaricus bisporus based on visual experience[J]. Chinese Edible Fungi,2021,40(2):169−172.
|
[16] |
CHO BYEONG-HYO, KOSEKI SHIGENOBU. Determination of banana quality indices during the ripening process at different temperatures using smartphone images and an artificial neural network[J]. Scientia Horticulturae,2021:288.
|
[17] |
ROZA DASTRES, MOHSEN SOORI. Advanced image processing systems[J]. International Journal of Imaging and Robotics™,2021,21(1):27−44.
|
[18] |
ZHANG Tianshuang, MA Yunfeng. Artificial intelligence vision based on computer digital technology in 3D image colour processing[J]. Journal of Physics: Conference Series, 2021, 1952(2).
|
[19] |
牛犇, 张栖瑞. 基于计算机视觉的数字图像处理方法研究——以梨果检测分级为例[J]. 信息记录材料,2021,22(5):195−197. [NIU Zhen, ZHANG Qirui. Research on digital image processing method based on computer vision-Taking pear fruit detection and grading as an example[J]. Information Recording Materials,2021,22(5):195−197.
|
[20] |
GÓMEZ ANAIS, BUENO DIANA, GUTIÉRREZ JUAN MANUEL. Electronic eye based on RGB analysis for the identification of tequilas[J]. Biosensors,2021,11(3):68. doi: 10.3390/bios11030068
|
[21] |
WANG Z, WANG E, ZHU Y. Image segmentation evaluation: A survey of methods[J]. Artificial Intelligence Review,2020,53(8):5637−5674. doi: 10.1007/s10462-020-09830-9
|
[22] |
XU Z, BAOJIE X, GUOXIN W. Canny edge detection based on Open CV[C]//2017 13th IEEE international conference on electronic measurement & instruments (ICEMI). IEEE, 2017: 53−56.
|
[23] |
KSHIRSAGAR G, THAKRE A N. Plant disease detection in image processing using MATLAB[J]. International Journal on Recent and Innovation Trends in Computing and Communication,2018,6(4):113−116.
|
[24] |
MARQUES O. Practical image and video processing using MATLAB[M]. John Wiley & Sons, 2011.
|
[25] |
CAZACU R. Matlab framework for image processing and feature extraction flexible algorithm design[C]//Multidisciplinary Digital Publishing Institute Proceedings. 2021, 63(1): 72.
|
[26] |
CHOWDHURY K. Mastering visual studio 2017[M]. Packt Publishing Ltd, 2017.
|
1. |
王雅利,赵楠,葛黎红,赖海梅,杨梦露,黄玉立,梅源,刘达玉,朱永清. 酵母菌对发酵萝卜品质的影响. 食品与发酵工业. 2024(24): 68-75 .
![]() | |
2. |
刘艳秋,范梓琪,常凯,毛迪锐,徐澎,耿业业. 玫瑰面包啤酒生产工艺优化. 北华大学学报(自然科学版). 2023(01): 134-140 .
![]() | |
3. |
颜子豪,孟庆芳,陈江魁,孙嘉怡. 冰糖红梨酒发酵工艺优化及香气成分分析. 食品工业科技. 2022(06): 228-235 .
![]() | |
4. |
李夏,谢光杰,王东鹏,徐旻. 发酵条件对高山葡萄石斛酒品质的影响研究. 食品安全质量检测学报. 2022(12): 4036-4042 .
![]() | |
5. |
赵彤,王宣,吴黎明,延莎,卢焕仙,赵洪木,薛晓锋. 发酵蜂产品研究进展. 食品工业科技. 2022(14): 461-466 .
![]() | |
6. |
刁体伟,陈晓姣,冷银江,魏鑫,赖晓琴,马懿. 植物源多酚对梨酒抗氧化能力及其感官品质的影响. 食品与发酵工业. 2022(23): 93-101 .
![]() |