ZHANG Yinping, XU Yan, ZHU Shuangjie, et al. Research on Intelligent Grading System of Imperial Chrysanthemum Based on Machine Vision[J]. Science and Technology of Food Industry, 2022, 43(5): 13−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090136.
Citation: ZHANG Yinping, XU Yan, ZHU Shuangjie, et al. Research on Intelligent Grading System of Imperial Chrysanthemum Based on Machine Vision[J]. Science and Technology of Food Industry, 2022, 43(5): 13−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090136.

Research on Intelligent Grading System of Imperial Chrysanthemum Based on Machine Vision

More Information
  • Received Date: September 09, 2021
  • Available Online: December 28, 2021
  • In order to realize the rapid nondestructive grade evaluation of Imperial Chrysanthemum, machine vision technology was applied to intelligently grade five grades of Imperial Chrysanthemum in this paper. Firstly, the grading device was designed according to the quality characteristics of Imperial Chrysanthemum, and different grading standards were set according to the color, shape, integrity and other characteristics of Imperial Chrysanthemum. Secondly, the image preprocessing of Imperial Chrysanthemum was completed by using image graying, image denoising and image enhancement technology. Thirdly, RGB model was used to complete the color feature extraction and recognition of Imperial Chrysanthemum, and the image integrity judgment and flower diameter calculation of Imperial Chrysanthemum were completed through image segmentation and edge detection technology, so as to obtain the prediction level of Imperial Chrysanthemum. Finally, a set of Imperial Chrysanthemum intelligent grading system was developed based on Microsoft Visual Studio 2017 platform to realize real-time visual operation. The results showed that the overall classification accuracy of the Imperial Chrysanthemum intelligent grading system designed in this paper reached 97.6%, and the average grading speed was more than 5 times that of manual classification. It was superior to the traditional manual classification in reliability, speed, work efficiency and robustness. This study provided a practical case and technical reference for the application of machine vision technology in the field of scented tea grading.
  • [1]
    国家药典委员会. 中华人民共和国药典一部[M]. 北京: 中国医药科技出版社, 2015: 310.

    National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Pharmaceutical Science and Technology Press, 2015: 310.
    [2]
    周跃东, 杨玉著. 安徽庐江: 金丝皇菊开出“致富花”[J]. 中国食品, 2020(22): 81.

    ZHOU Yuedong, YANG Yuzhu, Lujiang, Anhui Province: Imperial chrysanthemum opens the “flower of getting rich”[J]. China Food, 2020(22): 81.
    [3]
    戴应和, 龙小琴, 田桂华, 等. 铜仁地区金丝皇菊种植及加工技术——以印江县为例[J]. 亚太传统医药,2020,16(9):71−74. [DAI Yinghe, LONG Xiaoqin, TIAN Guihua, et al. Planting and processing technology of Imperial chrysanthemum in Tongren Area-Taking Yinjiang County as an example[J]. Asia Pacific traditional medicine,2020,16(9):71−74.
    [4]
    孔凡玉, 庞雪莉, 曹建敏, 等. 金丝皇菊——不仅仅是茶饮[J]. 生命世界,2020(8):26−29. [KONG Fanyu, PANG Xueli, CAO Jianmin, et al. Imperial chrysanthemum-not just tea[J]. Life World,2020(8):26−29.
    [5]
    李曦, 郭灵安, 雷欣宇, 等. 金丝皇菊的营养成分分析与评价[J]. 现代食品科技,2019,35(11):237−241,260. [LI Xi, GUO Ling'an, LEI Xinyu, et al. Analysis and evaluation of nutritional components of Imperial chrysanthemum[J]. Modern Food Science and Technology,2019,35(11):237−241,260.
    [6]
    熊金, 彭勇, 余兴华. 机器视觉在烟草薄膜识别中的应用[J]. 科学技术创新,2021(25):44−45. [XIONG Jin, PENG Yong, YU Xinghua. Application of machine vision in tobacco film recognition[J]. Science and Technology Innovation,2021(25):44−45. doi: 10.3969/j.issn.1673-1328.2021.25.021
    [7]
    杨再雄, 吴恋, 左建, 等. 基于人工智能的农产水果分级检测技术综述[J]. 科技创新与应用,2021,11(22):41−43. [YANG Zaixiong, WU Lian, ZUO Jian, et al. Overview of grading and detection technology of agricultural fruits based on artificial intelligence[J]. Scientific and Technological Innovation and Application,2021,11(22):41−43.
    [8]
    李志伟, 霍静琦, 蒿晟昆. 机器视觉技术在农业智能装备中应用的研究进展[J]. 当代农机,2021(7):5−7. [LI Zhiwei, HUO Jingqi, HAO Shengkun. Research progress of machine vision technology in agricultural intelligent equipment[J]. Contemporary Agricultural Machinery,2021(7):5−7.
    [9]
    KUMA M K P, PARKAVI A. Quality grading of the fruits and vegetables using image processing techniques and machine learning: A review[J]. Advances in Communication Systems and Networks,2020:477−486.
    [10]
    LAL S, BEHERA S K, SETHY P K, et al. Identification and counting of mature apple fruit based on BP feed forward neural network[C]//2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). IEEE, 2017: 361−368.
    [11]
    MESA A R, CHIANG J Y. Multi-input deep learning model with RGB and hyperspectral imaging for banana grading[J]. Agriculture,2021,11(8):687. doi: 10.3390/agriculture11080687
    [12]
    BEHERA S, MAHAPATRA A, RATH A, et al. Classification & grading of tomatoes using image processing techniques[J]. International Journal of Innovative Technology and Exploring Engineering,2019,8:545.
    [13]
    李倩倩. 基于计算机视觉的猕猴桃无损检测与自动分级研究[D]. 合肥: 安徽农业大学, 2020.

    LI Qianqian. Research on nondestructive testing and automatic grading of kiwifruit based on computer vision[D]. Hefei: Anhui Agricultural University, 2020.
    [14]
    汪威, 刘亚川, 吕斌, 等. 一种去柄鲜香菇视觉分级系统设计[J]. 食品与机械,2021,37(3):105−111. [WANG Wei, LIU Yachuan, LV Bin, et al. Design of a visual grading system for fresh Lentinus edodes[J]. Food and Machinery,2021,37(3):105−111.
    [15]
    钱柏英, 刘志刚. 基于视觉体验的双孢蘑菇在线自动分级设计与试验[J]. 中国食用菌,2021,40(2):169−172. [QIAN Baiying, LIU Zhigang. Design and experiment of online automatic classification of Agaricus bisporus based on visual experience[J]. Chinese Edible Fungi,2021,40(2):169−172.
    [16]
    CHO BYEONG-HYO, KOSEKI SHIGENOBU. Determination of banana quality indices during the ripening process at different temperatures using smartphone images and an artificial neural network[J]. Scientia Horticulturae,2021:288.
    [17]
    ROZA DASTRES, MOHSEN SOORI. Advanced image processing systems[J]. International Journal of Imaging and Robotics™,2021,21(1):27−44.
    [18]
    ZHANG Tianshuang, MA Yunfeng. Artificial intelligence vision based on computer digital technology in 3D image colour processing[J]. Journal of Physics: Conference Series, 2021, 1952(2).
    [19]
    牛犇, 张栖瑞. 基于计算机视觉的数字图像处理方法研究——以梨果检测分级为例[J]. 信息记录材料,2021,22(5):195−197. [NIU Zhen, ZHANG Qirui. Research on digital image processing method based on computer vision-Taking pear fruit detection and grading as an example[J]. Information Recording Materials,2021,22(5):195−197.
    [20]
    GÓMEZ ANAIS, BUENO DIANA, GUTIÉRREZ JUAN MANUEL. Electronic eye based on RGB analysis for the identification of tequilas[J]. Biosensors,2021,11(3):68. doi: 10.3390/bios11030068
    [21]
    WANG Z, WANG E, ZHU Y. Image segmentation evaluation: A survey of methods[J]. Artificial Intelligence Review,2020,53(8):5637−5674. doi: 10.1007/s10462-020-09830-9
    [22]
    XU Z, BAOJIE X, GUOXIN W. Canny edge detection based on Open CV[C]//2017 13th IEEE international conference on electronic measurement & instruments (ICEMI). IEEE, 2017: 53−56.
    [23]
    KSHIRSAGAR G, THAKRE A N. Plant disease detection in image processing using MATLAB[J]. International Journal on Recent and Innovation Trends in Computing and Communication,2018,6(4):113−116.
    [24]
    MARQUES O. Practical image and video processing using MATLAB[M]. John Wiley & Sons, 2011.
    [25]
    CAZACU R. Matlab framework for image processing and feature extraction flexible algorithm design[C]//Multidisciplinary Digital Publishing Institute Proceedings. 2021, 63(1): 72.
    [26]
    CHOWDHURY K. Mastering visual studio 2017[M]. Packt Publishing Ltd, 2017.
  • Cited by

    Periodical cited type(6)

    1. 王雅利,赵楠,葛黎红,赖海梅,杨梦露,黄玉立,梅源,刘达玉,朱永清. 酵母菌对发酵萝卜品质的影响. 食品与发酵工业. 2024(24): 68-75 .
    2. 刘艳秋,范梓琪,常凯,毛迪锐,徐澎,耿业业. 玫瑰面包啤酒生产工艺优化. 北华大学学报(自然科学版). 2023(01): 134-140 .
    3. 颜子豪,孟庆芳,陈江魁,孙嘉怡. 冰糖红梨酒发酵工艺优化及香气成分分析. 食品工业科技. 2022(06): 228-235 . 本站查看
    4. 李夏,谢光杰,王东鹏,徐旻. 发酵条件对高山葡萄石斛酒品质的影响研究. 食品安全质量检测学报. 2022(12): 4036-4042 .
    5. 赵彤,王宣,吴黎明,延莎,卢焕仙,赵洪木,薛晓锋. 发酵蜂产品研究进展. 食品工业科技. 2022(14): 461-466 . 本站查看
    6. 刁体伟,陈晓姣,冷银江,魏鑫,赖晓琴,马懿. 植物源多酚对梨酒抗氧化能力及其感官品质的影响. 食品与发酵工业. 2022(23): 93-101 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (198) PDF downloads (27) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return