LI Furong, LIU Wenwen, WEN Dian, et al. Study on Origin Tracing of Dried Tangerine Peel Using Mineral Element Fingerprints[J]. Science and Technology of Food Industry, 2022, 43(11): 295−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090119.
Citation: LI Furong, LIU Wenwen, WEN Dian, et al. Study on Origin Tracing of Dried Tangerine Peel Using Mineral Element Fingerprints[J]. Science and Technology of Food Industry, 2022, 43(11): 295−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090119.

Study on Origin Tracing of Dried Tangerine Peel Using Mineral Element Fingerprints

More Information
  • Received Date: September 08, 2021
  • Available Online: April 01, 2022
  • By analyzing the differences of mineral element contents in dried tangerine peel from different producing areas, combined with multivariate statistical analysis, the effective origin traceability indexes based on mineral element fingerprint analysis technology were selected to construct its discrimination model of different origin identification. In this study, 206 dried tangerine peel samples were collected from three different producing areas as Guangdong, Fujian and Chongqing. The contents of 32 mineral elements were determined by inductively coupled plasma mass spectrometer (ICP-MS) and inductively coupled plasma atomic emission spectrometer (ICP-AES). Combined with analysis of variance, principal component analysis, linear discriminant analysis and orthogonal partial least squares discriminant analysis, a discriminant model of dried tangerine peel producing area was established. The results showed that 26 of the 32 mineral elements in the dried tangerine peel samples had significant differences between Guangdong and other two producing areas, and 11 of them had significant differences between the three different regions. After principal component analysis, four principal components could be extracted from the 32 mineral elements, representing 70.0% of the total index. Based on the principal component analysis, the dried tangerine peel samples could be preliminarily clustered according to their different origin. The main variables of the first two principal components were Dy, Sm, Gd, Pr, Nd, Y, La, Fe, Be, V, Ce, Sc, Co, P, Mo, As, Pb and B. Through linear discriminant analysis, 21 mineral elements K, P, Ca, Co, Cu, Mn, Mo, V, Ni, B, Li, Pb, As, Sr, Ti, Th, Gd, Sc, Nd, Pr and Y were determined as effective traceability indexes of the dried tangerine peel. Additionally, based on the discriminant model established by orthogonal partial least squares discriminant analysis, the importance of 13 elements Sc, B, Y, Co, Nd, La, Pr, Be, Gd, Dy, Sm, Mo and Fe were determined. For the discrimination models established by the two above-mentioned discrimination analysis methods, their overall correct discrimination rates of cross validation and external sample validation were both 100%, which basically achieved the origin discrimination of dried tangerine peel. The research suggested that the mineral element fingerprint analysis technology can be used for the origin traceability discrimination of dried tangerine peel.
  • [1]
    FU M, XU Y, CHEN Y, et al. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage[J]. Food Chemistry,2017,230:649−656. doi: 10.1016/j.foodchem.2017.03.098
    [2]
    崔佳韵, 梁建芬. 不同年份新会陈皮挥发油的抗氧化活性评价[J]. 食品科技,2019,44(1):103−107. [CUI J Y, LIANG J F. Antioxidant capacities of essential oils in Xinhui Pericarpium Citri Reticulatae at different storage period[J]. Food Science and Technology,2019,44(1):103−107.
    [3]
    ZHANG H J, CUI J F, TIAN G F, et al. Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel[J]. Food Chemistry,2019,289:340−350. doi: 10.1016/j.foodchem.2019.03.063
    [4]
    CHEN X, TAIT A R, KITTS D D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities[J]. Food Chemistry,2017,218:15−21. doi: 10.1016/j.foodchem.2016.09.016
    [5]
    赵秀玲. 陈皮生理活性成分研究进展[J]. 食品工业科技,2013,34(12):376−381. [ZHAO X L. Research progress in physiologically active compounds ofPericarpium Citri Reticulatae[J]. Science and Technology of Food Industry,2013,34(12):376−381.
    [6]
    郑国栋, 罗美霞, 罗琥捷, 等. 不同品种来源陈皮总黄酮和多糖含量测定及分析比较研究[J]. 中南药学,2018,16(5):679−683. [ZHENG G D, LUO M X, LUO H J, et al. Content determination and comparison of total flavonoids and polysaccharide in Citri Reticulatae Pericarpium from different cultivars[J]. Central South Pharmacy,2018,16(5):679−683. doi: 10.7539/j.issn.1672-2981.2018.05.022
    [7]
    杨洋, 蒋林, 郑国栋, 等. 道地药材广陈皮的HPLC 指纹图谱研究[J]. 中药材,2011,34(2):191−195. [YANG Y, JIANG L, ZHEN G D, et al. HPLC fingerprint of Pericarpium Citri Reticultae from Guangdong Province[J]. Journal of Chinese Medicinal Materials,2011,34(2):191−195.
    [8]
    龚丽, 龙成树, 刘清化, 等. 广陈皮热泵干燥工艺参数优化研究[J]. 食品工业科技,2015,36(17):220−228. [GONG L, LONG C S, LIU Q H, et al. Optimization of heat pump drying technology parameters of Pericarpium Citri Reticulatae[J]. Science and Technology of Food Industry,2015,36(17):220−228.
    [9]
    徐展翅, 马换换, 李伟, 等. 广陈皮与普通陈皮的HPLC指纹图谱对比分析[J]. 广州中医药大学学报,2018,35(4):721−726. [XU Z C, MA H H, LI W, et al. Analysis of HPLC fingerprint of Pericarpium Citri Reticulatae from Citrus reticulata Blanco 'Chachi' and other cultivated varieties of Citrus reticulata Blanco[J]. Journal of Guangzhou University of Traditional Chinese Medicine,2018,35(4):721−726.
    [10]
    周欣, 黄庆华, 莫云燕, 等. GC/MS对不同年份新会陈皮挥发油的分析[J]. 中药材,2009,32(1):24−26. [ZHOU X, HUANG Q H, MO Y Y, et al. Analysis on the volatile oil of Xinhui Pericarpium Citri Reticulatae in different years by GC/MS[J]. Chinese Traditional Patent Medicine,2009,32(1):24−26. doi: 10.3321/j.issn:1001-4454.2009.01.008
    [11]
    巢颖欣, 刘梦诗, 杨秀娟, 等. 薄层色谱法快速鉴别广陈皮与陈皮[J]. 中成药,2021,43(7):1937−1940. [CHAO Y X, LIU M S, YANG X J, et al. Rapid identification of Pericarpium Citri Reticulatae from Citrus reticulata Blanco 'Chachi' and other cultivated varieties of Citrus reticulata Blanco by thin-layer chromatography (TLC)[J]. Chinese Traditional Patent Medicine,2021,43(7):1937−1940. doi: 10.3969/j.issn.1001-1528.2021.07.048
    [12]
    卢诗扬, 张雷蕾, 潘家荣, 等. 特色农产品产地溯源技术研究进展[J]. 食品安全质量检测学报,2020,11(14):4849−4855. [LU S Y, ZHANG L L, PAN J R, et al. Research progress on origin traceability technology of characteristic agricultural products[J]. Journal of Food Safety and Quality,2020,11(14):4849−4855.
    [13]
    BERTOLDI D, COSSIGNANI L, BLASI F, et al. Characterisation and geographical traceability of Italian goji berries[J]. Food Chem,2019,275:585−593. doi: 10.1016/j.foodchem.2018.09.098
    [14]
    BENNION M, MORRISON L, BROPHY D, et al. Trace element fingerprinting of blue mussel (Mytilus edulis) shells and soft tissues successfully reveals harvesting locations[J]. Sci Total Environ,2019,685:50−58. doi: 10.1016/j.scitotenv.2019.05.233
    [15]
    CAMIN F, PAVONE A, BONTEMPO L, et al. The use of IRMS, 1H NMR and chemical analysis to characterize Italian and imported Tunisian olive oils[J]. Food Chemistry,2016,196:98−105. doi: 10.1016/j.foodchem.2015.08.132
    [16]
    夏立娅, 高巍, 李亚平, 等. 基于多元素分析的冬枣产地鉴别方法[J]. 食品工业科技,2016,37(24):49−52,57. [XIA L Y, GAO W, LI Y P, et al. Identification of Ziziphus jujuba origin by multi-element analysis[J]. Science and Technology of Food Industry,2016,37(24):49−52,57.
    [17]
    SAKRAM G, MACHENDER G, DHAKATE R, et al. Assessment of trace elements in soils around Zaheerabad Town, Medak District, Andhra Pradesh, India[J]. Environmental Earth Sciences,2014,73(8):4511−4524.
    [18]
    蒋再强. 矿物元素指纹图谱分析技术对粮食产地溯源的研究进展[J]. 农产品加工,2018,5(3):70−71,75. [JIANG Z Q. Research progress on traceability of grain origin produced by mineral element fingerprint analysis technology[J]. Farm Products Processing,2018,5(3):70−71,75.
    [19]
    齐婧, 李莹莹, 姜锐, 等. 矿物元素和稳定同位素在肉类食品产地溯源中的应用研究进展[J]. 肉类研究,2019,33(11):67−72. [QI J, LI Y Y, JIANG R, et al. Advances in the application of mineral elements and stable isotopes in geographical origin traceability of meat products[J]. Meat Research,2019,33(11):67−72.
    [20]
    刘雯雯, 陈岩, 杨慧, 等. 稳定同位素及矿物元素分析在谷物产地溯源中应用的研究进展[J]. 食品科学,2019,40(13):340−348. [LIU W W, CHEN Y, YANG H, et al. Recent advances in the application of stable isotope and mineral element analysis in tracing the geographical origin of cereal grains[J]. Food Science,2019,40(13):340−348. doi: 10.7506/spkx1002-6630-20180813-125
    [21]
    鹿保鑫, 张东杰. 基于矿物元素指纹图谱的黑龙江黄豆产地溯源[J]. 农业工程学报,2017,33(21):216−221. [LU B X, ZHANG D J. Origin traceability of Heilongjiang soybean using fingerprint of mineral elements[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(21):216−221. doi: 10.11975/j.issn.1002-6819.2017.21.026
    [22]
    YE X H, JIN S, WANG D H, et al. Identification of the origin of white tea based on mineral element content[J]. Food Analytical Methods,2017,10(1):191−199. doi: 10.1007/s12161-016-0568-5
    [23]
    赵芳, 林立, 孙翔宇, 等. 基于稀土元素指纹分析识别葡萄酒原产地[J]. 现代食品科技,2015,31(2):261−267. [ZHAO F, LIN L, SUN X Y, et al. Identification of wine of origins using rare earth element fingerprinting[J]. Modern Food Science and Technology,2015,31(2):261−267.
    [24]
    白婷, 蔡浩洋, 邓银华, 等. 基于微量元素指纹图谱对黑水凤尾鸡进行产地溯源的研究[J]. 中国测试,2018,44(9):57−62,74. [BAI T, CAI H Y, DENG Y H, et al. Study on origin of Heishui Phoenix chicken based on trace element fingerprint[J]. China Measurement & Test,2018,44(9):57−62,74. doi: 10.11857/j.issn.1674-5124.2018.09.011
    [25]
    SQUADRONE S, BRIZIO P, STELLA C, et al. Trace elements and rare earth elements in honeys from the Balkans, Kazakhstan, Italy, South America, and Tanzania[J]. Environmental Science and Pollution Research,2020,27(1):12646−12657.
    [26]
    ZHANG S, WEI Y, WEI S, et al. Authentication of Zhongning wolfberry with geographical indication by mineral profile[J]. International Journal of Food Science & Technology,2017,52(2):457−463.
    [27]
    廖婉, 高天慧, 林美斯, 等. 姜黄属中药重金属元素与道地性的相关性研究[J]. 中草药,2018,49(12):2833−2839. [LIAO W, GAO T H, LIN M S, et al. Correlation between heavy metal elements in Curcuma herbs and their genuineness[J]. Chinese Traditional and Herbal Drugs,2018,49(12):2833−2839. doi: 10.7501/j.issn.0253-2670.2018.12.015
    [28]
    HE Y, SUN Q, ZHANG X, et al. Authentication of the geographical origin of Maca (Lepidium meyenii Walp.) at different regional scales using the stable isotope ratio and mineral elemental fingerprints[J]. Food Chemistry,2020,311:126058. doi: 10.1016/j.foodchem.2019.126058
    [29]
    王亚盟, 郭家平, 刘洁, 等. 不同产地黑果枸杞中主要矿质元素含量比较及主成分分析[J]. 食品工业科技,2021,42(11):233−239. [WANG Y M, GUO J P, LIU J, et al. Comparison and principal component analysis of main mineral elements in Lycium ruthenicum murray from different habitats[J]. Science and Technology of Food Industry,2021,42(11):233−239.
    [30]
    李蕾, 苏园, 陈楚国, 等. 微敞开体系快速石墨消解-原子荧光法测定食品及土壤中的硒[J]. 环境化学,2020,39(4):1098−1104. [LI L, SU Y, CHEN C G, et al. Fast determination of selenium in food and soils by micro-open graphite digestion-atomic fluorescence spectrometry[J]. Environmental Chemistry,2020,39(4):1098−1104. doi: 10.7524/j.issn.0254-6108.2019080704
    [31]
    杨健, 吴浩, 杨光, 等. 基于稳定同位素比和元素分析技术的何首乌产地识别研究[J]. 中国中药杂志,2018,43(13):2676−2681. [YANG J, WU H, YANG G, et al. Geographical origin discriminant of Polygoni Multiflori Radix based on stable isotope ratios and elemental analysis[J]. China Journal of Chinese Materia Medica,2018,43(13):2676−2681.
    [32]
    马楠, 鹿保鑫, 刘雪娇, 等. 矿物元素指纹图谱技术及其在农产品产地溯源中的应用[J]. 现代农业科技,2016,9:296−298. [MA N, LU B X, LIU X J, et al. Technology of mineral elements fingerprint and its application in origin traceability of agricultural production[J]. Modern Agricultural Science and Technology,2016,9:296−298. doi: 10.3969/j.issn.1007-5739.2016.05.171
    [33]
    夏魏, 刘志, 邵圣枝, 等. 茶叶与产地环境中稳定同位素和矿物元素特征及其相关性研究[J]. 核农学报,2020,34(3):573−581. [XIA W, LIU Z, SHAO S Z, et al. Feature of stable isotope and mineral element composition from tea and its environment with correlation analysis[J]. Journal of Nuclear Agricultural Sciences,2020,34(3):573−581.
    [34]
    刘铮, 朱其清, 唐丽华, 等. 我国缺乏微量元素的土壤及其区域分布[J]. 土壤学报,1982,19(3):209−223. [LIU Z, ZHU Q Q, TANG L H, et al. Geographical distribution of trace elements deficient soils in China[J]. Acta Pedologica Sinica,1982,19(3):209−223.
    [35]
    贺媛媛, 孙倩倩, 郭波莉, 等. 基于矿质元素指纹的粉葛产地溯源研究[J]. 核农学报,2021,35(7):1565−1573. [HE Y Y, SUN Q Q, GUO B L, et al. Tracebility of Puerariae thomsonii radix (Fenge) geographical origin based on mineral element fingerprint[J]. Journal of Nuclear Agricultural Sciences,2021,35(7):1565−1573. doi: 10.11869/j.issn.100-8551.2021.07.1565
    [36]
    LIU W W, CHEN Y, LIAO R X, et al. Authentication of the geographical origin of Guizhou green tea using stable isotope and mineral element signatures combined with chemometric analysis[J]. Food Control,2021,125:107954. doi: 10.1016/j.foodcont.2021.107954
    [37]
    李安, 陈秋生, 赵杰, 等. 基于稳定同位素与稀土元素指纹特征的大桃产地判别分析[J]. 食品科学,2020,41(6):322−328. [LI A, CHEN Q S, ZHAO J, et al. Discriminations of the geographical origin of peach based on stable isotope and rare earth element fingerprint characteristics[J]. Food Science,2020,41(6):322−328. doi: 10.7506/spkx1002-6630-20190414-183
    [38]
    ZHANG T W, WANG Q, LI J R, et al. Study on the origin traceability of Tibet highland barley (Hordeum vulgare L.) based on its nutrients and mineral elements[J]. Food Chemistry,2021,346:128928. doi: 10.1016/j.foodchem.2020.128928
    [39]
    WORLEY B, POWERS R. Multivariate analysis in metabolomics[J]. Current Metabolomics,2012,1(1):92−107.
    [40]
    开建荣, 石欣, 李彩虹, 等. 基于矿物元素技术的中宁不同产区枸杞的判别分析[J]. 食品与发酵工业, 2021: 1−12 [2021-06-30]. doi: 10.13995/j.cnki.11-1802/ts.027625

    KAI J R, SHI X, LI C H, et al. Discriminant analysis of Lycium barbarum from different areas in Zhongning based on mineral element technique[J]. Food and Fermentation Industries, 2021: 1−12 [2021-06-30]. doi: 10.13995/j.cnki.11-1802/ts.027625.
    [41]
    林昕, 黎其万, 和丽忠, 等. 基于稀土元素指纹分析判别普洱古树茶和台地茶的研究[J]. 现代食品科技,2013,9(12):2921−2925, 2893. [LIN X, LI Q F, HE L Z, et al. Application of heavy rare earth element fingerprints in discrimination of pu’er old plant tea and tableland tea[J]. Modern Food Science and Technology,2013,9(12):2921−2925, 2893.
  • Cited by

    Periodical cited type(10)

    1. 邓少颖,孙健,朱红,岳瑞雪,张毅,张文婷,马晨. 双螺杆挤压甘薯膨化圈工艺优化及其品质评价. 食品研究与开发. 2025(02): 108-118 .
    2. 刘晓飞,吴浚滢,赵香香,戚月娜,刘畅,张娜. 超微粉碎对4种米的理化特性及抗氧化能力的影响. 粮食与油脂. 2023(04): 26-31 .
    3. 阮蕴莹,邓媛元,张雁,魏振承,唐小俊,李萍,张元,王智明,刘光,张名位. 不同葡萄糖当量值预消化大米膨化粉的理化性质和结构特性. 食品科学. 2023(14): 29-36 .
    4. 肖家喜,段映羽,邹晓琴,张名位,张瑞芬,刘磊,张元,马勤. 冲调米粉酶解耦合挤压膨化工艺优化及其产品性质分析. 中国粮油学报. 2023(08): 49-57 .
    5. 张新振,梁进,李雪玲,孙玥,高洋,王冉,刘杰梅,徐雪野,张歌兴,李贝贝,钟杨,周颖娣,李志鑫. 蓝莓渣复合籼米冲调粉的配方优化及品质分析. 中国粮油学报. 2023(09): 35-41 .
    6. 王晨,王燕,吴卫国,廖卢艳. 双螺杆挤压复合方便粥配方优化及品质分析. 食品工业科技. 2022(05): 245-254 . 本站查看
    7. 许立益,余宏达,江冬怡,郑经绍,林嘉尉,黄苇. 紫米与籼米复配比对复配粉性质及紫米粉丝品质的影响. 食品工业科技. 2022(17): 114-121 . 本站查看
    8. 赵起圆,宋春丽,周恪驰,任健,孙天颖. 挤压膨化对全籽粒玉米粉加工特性的研究. 食品科技. 2022(09): 138-143 .
    9. 张新振,杨涛,蒋依婷,琚飞龙,高洋,孙玥,李雪玲,梁进. 蓝莓渣复合籼米膨化工艺优化及抗氧化活性研究. 食品与机械. 2022(10): 194-200 .
    10. 王崑仑,管立军,高扬,任传英,严松,李家磊,季妮娜,李波,周野. 糙米速食米粥工艺优化及其结构表征. 农业工程学报. 2022(S1): 310-320 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (283) PDF downloads (38) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return