Citation: | REN Heng, LIN Shengwei, CHOU Yixuan, et al. Research Progress on the Effect of Ultrasonic Modification on Structures and Physicochemical Properties of Dietary Fibers[J]. Science and Technology of Food Industry, 2022, 43(17): 474−481. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090102. |
[1] |
QIAO H, SHAO H, ZHENG X, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry,2021,335:1−10.
|
[2] |
LAGE N N, DE FREITAS C M M, GUERRA J F C, et al. Jaboticaba (Myrciaria cauliflora) peel supplementation prevents hepatic steatosis through hypolipidemic effects and cholesterol metabolism modulation in diet-induced NAFLD rat model[J]. Journal of Medicinal Food,2021,1:1−10.
|
[3] |
LIU H F, ZENG X Y, HUANG J Y, et al. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo[J]. Carbohydrate Polymers,2021,252(15):1−10.
|
[4] |
SOLIMAN G. Dietary fiber, atherosclerosis, and cardiovascular disease[J]. Nutrients,2019,5(11):1−11.
|
[5] |
CHEN H H, ZHAO C M, LI J, et al. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root[J]. LWT-Food Science and Technology,2018,93:204−211. doi: 10.1016/j.lwt.2018.03.004
|
[6] |
乔汉桢, 刘佳琪, 许雯雯, 等. 甘薯渣膳食纤维的制备及改性工艺研究进展[J]. 饲料研究,2019,42(7):89−94. [QIAO H Z, LIU J Q, XU W W, et al. Preparation and modification of dietary fiber from sweet potato residues[J]. Feed Research,2019,42(7):89−94.
QIAO H Z, LIU J Q, XU W W, et al. Preparation and modification of dietary fiber from sweet potato residues[J]. Feed Research, 2019, 42(7): 89-94.
|
[7] |
WANG X M, MAJZOOBI M, FARAHNAKY A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review[J]. Ultrasonics Sonochemistry,2020,65:1−37.
|
[8] |
MARTINEZ-SOLANO K C, GARCIA-CARRERA N A, TEJADA-ORTIGOZA V, et al. Ultrasound application for the extraction and modification of fiber-rich by-products[J]. Food Engineering Reviews,2020,11:1−20.
|
[9] |
ZHOU C S, YU X J, MA H L, et al. Examining of athermal effects in microwave-induced glucose/glycine reaction and degradation of polysaccharide from Porphyra yezoensis[J]. Carbohydrate Polymers,2013,97(1):38−44. doi: 10.1016/j.carbpol.2013.04.033
|
[10] |
UMEGO E C, HE R H, REN W B, et al. Ultrasonic-assisted enzymolysis: Principle and applications[J]. Process Biochemistry,2021,100:59−68. doi: 10.1016/j.procbio.2020.09.033
|
[11] |
GAN J P, HUANG Z Y, YU Q, et al. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel[J]. Food Hydrocolloids,2020,101:1−40.
|
[12] |
DONG W J, WANG D D, HU R S, et al. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods[J]. Food Research International,2020,6(13):1−32.
|
[13] |
HUANG L R, DING X N, ZHAO Y S, et al. Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment[J]. Journal of Food Processing and Preservation,2018,42(1):1−8.
|
[14] |
ZHANG W, ZENG G, PAN Y, et al. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction[J]. Carbohydrate Polymers,2017,172:102−112. doi: 10.1016/j.carbpol.2017.05.030
|
[15] |
张晓龙, 田亚红, 常丽新, 等. 响应面优化超声-碱解法提取玉米芯中可溶性膳食纤维的工艺[J]. 食品工业科技,2014,35(12):262−267. [ZHANG X L, TIAN Y H, CHANG L X, et al. Ultrasonics-alkali extraction technology of soluble dietary fiber from corn cob by response surface method[J]. Science and Technology of Food Industry,2014,35(12):262−267. doi: 10.13386/j.issn1002-0306.2014.12.049
ZHANG X L, TIAN Y H, CHANG L X, et al. Ultrasonics-alkali extraction technology of soluble dietary fiber from corn cob by response surface method[J]. Science and Technology of Food Industry, 2014, 35(12): 262-267. doi: 10.13386/j.issn1002-0306.2014.12.049
|
[16] |
孙健, 钮福祥, 岳瑞雪, 等. 超声波辅助酶法提取甘薯渣膳食纤维的研究[J]. 核农学报,2014,28(7):1261−1266. [SUN J, NIU F X, YUE R X, et al. Extraction of dietary fiber from sweet potato residues by enzymatic hydrolysis method assisted by ultrasonic technology[J]. Journal of Nuclear Agricultural Sciences,2014,28(7):1261−1266. doi: 10.11869/j.issn.100-8551.2014.07.1261
SUN J, NIU F X, YUE R X, et al. Extraction of dietary fiber from sweet potato residues by enzymatic hydrolysis method assisted by ultrasonic technology[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(7): 1261-1266. doi: 10.11869/j.issn.100-8551.2014.07.1261
|
[17] |
陈嫣, 段振华, 刘艳, 等. 超声波-微波辅助提取香芋皮水溶性膳食纤维工艺[J]. 食品工业,2020,41(12):12−15. [CHEN Y, DUAN Z H, LIU Y, et al. Optimization of ultrasonic-microwave assisted extraction of soluble dietary fiber from taro (Colocasia esculenta) peels[J]. The Food Industry,2020,41(12):12−15.
CHEN Y, DUAN Z H, LIU Y, et al. Optimization of ultrasonic-microwave assisted extraction of soluble dietary fiber from taro (Colocasia Esculenta) peels[J]. The Food Industry, 2020, 41(12): 12-15.
|
[18] |
文攀, 裴志胜, 朱婷婷, 等. 黄皮果肉可溶性膳食纤维制备工艺优化及单糖组成和结构表征[J]. 食品工业科技,2020,41(21):29−36. [WEN P, PEI Z S, ZHU T T, et al. Preparation technology optimization of soluble dietary fiber and its structure characterization and composition of monosaccharide from Clausena lansium sarcocarp[J]. Science and Technology of Food Industry,2020,41(21):29−36.
WEN P, PEI Z S, ZHU T T, et al. Preparation technology optimization of soluble dietary fiber and its structure characterization and composition of monosaccharide from Clausena lansium sarcocarp[J]. Science and Technology of Food Industry, 2020, 41(21): 29-36.
|
[19] |
MENG X H, WU C C, LIU H Z, et al. Dietary fibers fractionated from gardenia (Gardenia jasminoides Ellis) husk: Structure and in vitro hypoglycemic effect[J]. Journal of the Science of Food and Agriculture,2021,10:1−33.
|
[20] |
牛希, 史乾坤, 赵城彬, 等. 超声改性对燕麦膳食纤维理化性质及结构的影响[J]. 食品科学,2020,41(23):1−11. [NIU X, SHI Q K, ZHAO C B, et al. Effect of ultrasonic modification on physicochemical properties and structure of oat dietary fiber[J]. Food Science,2020,41(23):1−11. doi: 10.7506/spkx1002-6630-20200418-237
NIU X, SHI Q K, ZHAO C B, et al. Effect of ultrasonic modification on physicochemical properties and structure of oat dietary fiber[J]. Food Science, 2020, 41(23): 1-11. doi: 10.7506/spkx1002-6630-20200418-237
|
[21] |
胡筱, 潘浪, 朱平平, 等. 超声波改性对葵花粕膳食纤维性质与结构的影响[J]. 中国食品学报,2019,19(11):88−99. [HU X, PAN L, ZHU P P, et al. Effects of ultrasonic modification on the properties and structure of dietary fiber in sunflower meal[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(11):88−99.
HU X, PAN L, ZHU P P, et al. Effects of ultrasonic modification on the properties and structure of dietary fiber in sunflower meal[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(11): 88-99.
|
[22] |
FAN X J, CHANG H D, LIN Y N, et al. Effects of ultrasound-assisted enzyme hydrolysis on the microstructure and physicochemical properties of okara fibers[J]. Ultrasonics Sonochemistry,2020,69:1−34.
|
[23] |
ULLAH I, HU Y, YOU J, et al. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel[J]. Food Hydrocolloids,2019,89:512−522. doi: 10.1016/j.foodhyd.2018.11.006
|
[24] |
ULLAH I, YIN T, XIONG S, et al. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling[J]. LWT-Food Science and Technology,2017,82:15−22. doi: 10.1016/j.lwt.2017.04.014
|
[25] |
SHEN M, WEIHAO W H, CAO L K. Soluble dietary fibers from black soybean hulls: Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity[J]. Journal of Food Science,2020,85(6):1668−1674. doi: 10.1111/1750-3841.15133
|
[26] |
ZHANG L, MA L, PAN Y P, et al. Effect of molecular weight on the antibacterial activity of polysaccharides produced by Chaetomium globosum CGMCC 6882[J]. International Journal of Biological Macromolecules,2021,188:863−869. doi: 10.1016/j.ijbiomac.2021.08.059
|
[27] |
HU X L, WANG K L, YU M, et al. Characterization and antioxidant activity of a low-molecular-weight xanthan gum[J]. Biomolecules,2019,9(11):1−12.
|
[28] |
曹龙奎, 康丽君, 寇芳, 等. 改性前后小米糠膳食纤维结构分析及体外抑制α-葡萄糖苷酶活性[J]. 食品科学,2018,39(11):46−52. [CAO L K, KANG L J, KOU F, et al. Structural analysis and in vitro inhibitory effect on α-glucosidase activity of millet bran dietary fiber before and after modification[J]. Food Science,2018,39(11):46−52. doi: 10.7506/spkx1002-6630-201811008
CAO L K, KANG L J, KOU F, et al. Structural analysis and in vitro inhibitory effect on α-glucosidase activity of millet bran dietary fiber before and after modification[J]. Food Science, 2018, 39(11): 46-52. doi: 10.7506/spkx1002-6630-201811008
|
[29] |
HUI H P, LI X Z, JIN H, et al. Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor Cotton[J]. International Journal of Biological Macromolecules,2019,133:306−315. doi: 10.1016/j.ijbiomac.2019.04.082
|
[30] |
KHODAEI N, KARBOUNE S. Extraction and structural characterisation of rhamnogalacturonan I-type pectic polysaccharides from potato cell wall[J]. Food Chemistry,2013,139(4):617−623.
|
[31] |
ZHANG Z B, LIU X Y, LI D W, et al. Mechanism of ultrasonic impregnation on porosity of activated carbons in non-cavitation and cavitation regimes[J]. Ultrasonics Sonochemistry,2019,51:206−213. doi: 10.1016/j.ultsonch.2018.10.024
|
[32] |
THITAME P V, SHUKLA S R. Porosity development of activated carbons prepared from wild almond shells and coir pith using phosphoric acid[J]. Chemical Engineering Communications,2016,203(6):791−800.
|
[33] |
UCHIDA T, SATO H, TAKEUCHI S, et al. Investigation of output signal from cavitation sensor by dissolved oxygen level and sonochemical luminescence[J]. Japanese Journal of Applied Physics,2010,49(7):1−3.
|
[34] |
XING Z L. Impact of university's optimal human resource management practices on organizational performance[J]. Systems Engineering,2009,29(11):112−122.
|
[35] |
张艳, 何翠, 刘玉凌, 等. 超声波改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(1):150−155. [ZHANG Y, HE C, LIU Y L, et al. Effect of ultrasound on physicochemical properties and structure of chimonobambusa dietary fibre[J]. Food and Fermentation Industries,2017,43(1):150−155.
ZHANG Y, HE C, LIU Y L, et al. Effect of ultrasound on physicochemical properties and structure of chimonobambusa dietary fibre[J]. Food and Fermentation Industries, 2017, 43(1): 150-155.
|
[36] |
MINJARES-FUENTES R, FEMENIA A, GARAU M C, et al. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology[J]. Carbohydrate Polymers,2016,138:180−191. doi: 10.1016/j.carbpol.2015.11.045
|
[37] |
TOMA M, VINATORU M, PANIWNYK L, et al. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction[J]. Ultrasonics Sonochemistry,2001,8(2):137−142. doi: 10.1016/S1350-4177(00)00033-X
|
[38] |
苟丽娜, 马云翔, 王宇霞, 等. 高比表面积阿魏酸多孔淀粉酯结构表征及体外消化特性[J]. 食品与发酵工业,2021,8:1−11. [GOU L N, MA Y X, WANG Y X, et al. Structural characterization and in vitro digestibility of ferulic acid porous starch ester with high specific surface area[J]. Food and Fermentation Industries,2021,8:1−11.
GOU L N, MA Y X, WANG Y X, et al. Structural characterization and in vitro digestibility of ferulic acid porous starch ester with high specific surface area[J]. Food and Fermentation Industries, 2021, 8: 1-11.
|
[39] |
ZHU F M, DU B, ZHENG L H. Advance on the bioactivity and potential applications of dietary fiber from grape pomace[J]. Food Chemistry,2015,186:207−212. doi: 10.1016/j.foodchem.2014.07.057
|
[40] |
IZADIFAR Z. Ultrasound pretreatment of wheat dried distiller's grain (DDG) for extraction of phenolic compounds[J]. Ultrasonics Sonochemistry,2013,20(6):1359−1369. doi: 10.1016/j.ultsonch.2013.04.004
|
[41] |
HUANG L R, MA H L, PENG L. Enzymolysis kinetics of garlic powder with single frequency countercurrent ultrasound pretreatment[J]. Food and Bioproducts Processing,2015,95:292−297. doi: 10.1016/j.fbp.2014.10.015
|
[42] |
COLOM X, CARRILLO F. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment[J]. European Polymer Journal,2002,38(11):2225−2230. doi: 10.1016/S0014-3057(02)00132-5
|
[43] |
HUANG L R, ZHANG W X, CHENG J, et al. Antioxidant and physicochemical properties of soluble dietary fiber from garlic straw as treated by energy-gathered ultrasound[J]. International Journal of Food Properties,2019,22(1):678−688. doi: 10.1080/10942912.2019.1600544
|
[44] |
MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095
|
[45] |
万苗苗. 柚皮果胶的提取、性质及应用研究[D]. 淮安: 淮阴工学院, 2019.
WAN M M. Study on extraction, properties and application of pectin from pomelo peels[D]. Huai’an: Huaiyin Institute of Technology, 2019.
|
[46] |
YANG B, WU Q J, LUO Y X, et al. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic[J]. International Journal of Biological Macromolecules,2019,137:676−687. doi: 10.1016/j.ijbiomac.2019.07.034
|
[47] |
乔汉桢, 刘佳文, 王迪, 等. 膳食纤维的理化功能特性及甘薯膳食纤维在动物生产中的应用[J]. 中国畜牧杂志,2019,10(55):25−29. [QIAO H Z, LIU J W, WANG D, et al. Physiochemical and functional properties of sweet potato residue fiber and its application in animal production[J]. Chinese Journal of Animal Science,2019,10(55):25−29.
QIAO H Z, LIU J W, WANG D, et al. Physiochemical and functional properties of sweet potato residue fiber and its application in animal production[J]. Chinese Journal of Animal Science, 2019, 10(55): 25-29.
|
[48] |
MA R, CHEN J N, ZHOU X J, et al. Effect of chemical and enzymatic modifications on the structural and physicochemical properties of dietary fiber from purple turnip (Brassica rapa L.)[J]. LWT-Food Science and Technology,2021,145:1−10.
|
[49] |
SHARMA A, RAO S. Constipation: Pathophysiology and current therapeutic approaches[J]. Handbook of Experimental Pharmacology,2017,239:59−74.
|
[50] |
CARRETTA M D, QUIROGA J, LÓPEZ R, et al. Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer[J]. Frontiers in Physiology,2021,12:1−13.
|
[51] |
XIE F Y, ZHAO T, WAN H C, et al. Structural and physicochemical characteristics of rice bran dietary fiber by cellulase and high-pressure homogenization[J]. Applied Sciences,2019,9(7):1−10.
|
[52] |
SUN J T, ZHANG Z C, XIAO F G, et al. Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues[J]. IOP Conference Series:Materials Science and Engineering,2018,392:1−7.
|
[53] |
CALVACHE J E N, SORIA M, DE ESCALADA P M F, et al. Optimization of the production of dietary fiber concentrates from by-products of papaya (Carica papaya L. var. Formosa) with microwave assistance. Evaluation of its physicochemical and functional characteristics[J]. Journal of Food Processing and Preservation,2017,41(4):1−12.
|
[54] |
QI J, LI Y, MASAMBA K G, et al. The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber[J]. Food Hydrocolloids,2016,52:699−706. doi: 10.1016/j.foodhyd.2015.08.008
|
[55] |
ULLAH I, YIN T, XIONG S B, et al. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling[J]. Journal of Food Engineering,2018,11(237):18−26.
|
[56] |
ENCALADA A M I, PEREZ C D, CALDERON P A, et al. High-power ultrasound pretreatment for efficient extraction of fractions enriched in pectins and antioxidants from discarded carrots (Daucus carota L.)[J]. Journal of Food Engineering,2019,256:28−36. doi: 10.1016/j.jfoodeng.2019.03.007
|
[57] |
REVIN V, ATYKYAN N, ZAKHARKIN D. Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment[J]. Electronic Journal of Biotechnology,2016,20:14−19. doi: 10.1016/j.ejbt.2015.11.007
|
[58] |
GUO Y T, LIU W, WU B G, et al. Modification of garlic skin dietary fiber with twin-screw extrusion process and in vivo evaluation of Pb binding[J]. Food Chemistry,2018,268:550−557. doi: 10.1016/j.foodchem.2018.06.047
|
[59] |
王彪. 青稞膳食纤维的改性及其应用研究[D]. 芜湖: 安徽工程大学, 2019.
WANG B. Study on modification and application of dietary fiber from hulless barely[D]. Wuhu: Anhui University of Technology and Science, 2019.
|
[60] |
李晗, 杨宗玲, 毕永雪, 等. 超声辅助酶法提取西番莲果皮可溶性膳食纤维及理化性质[J]. 食品工业科技,2020,41(7):161−165. [LI H, YANG Z L, BI Y X, et al. Extraction of soluble dietary fiber from Passiflora edulis peel by ultrasonic assisted enzymatic method and its physicochemical properties[J]. Science and Technology of Food Industry,2020,41(7):161−165.
LI H, YANG Z L, BI Y X, et al. Extraction of soluble dietary fiber from passiflora edulis peel by ultrasonic assisted enzymatic method and its physicochemical properties[J]. Science and Technology of Food Industry, 2020, 41(7): 161-165.
|