Citation: | TIAN Yingpeng, CHEN Jie, WANG Lei, et al. Effects of Extraction Methods on the Physicochemical Properties and Bioactivities in Vitro of Raspberry (Rubus idaeus L.) Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090060. |
[1] |
YU Z, Liu L, XU Y, WANG L, et al. Characterization and biological activities of a novel polysaccharide isolated from raspberry (Rubus idaeus L.) fruits[J]. Carbohydr Polymers,2015,132:180−186. doi: 10.1016/j.carbpol.2015.06.068
|
[2] |
GAO J, LIN L, SUN B, et al. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: Structural characterization and bile acid-binding capacity[J]. Food Function,2017,8(9):3043−3052. doi: 10.1039/C7FO00218A
|
[3] |
WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit[J]. Food Chemistry,2018,249(May30):127−135.
|
[4] |
DINA R, SERGIO S, ALINE S, et al. Impact of enzyme and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal[J]. Food Chemistry,2015,12:3177−3188.
|
[5] |
李超. 药食同源夏枯草多糖的分离纯化、结构鉴定及生物活性研究[D]. 广州: 华南理工大学, 2015
LI C. Isolation, purification and structural identification of polysaccharides from Prunella vulgaris Linn and their biological activities[D]. Guangzhou: South China University of Technology, 2015.
|
[6] |
NIE X R, LI H Y, DU G, et al. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China[J]. International Journal of Biological Macromolecules,2019,139:459−467. doi: 10.1016/j.ijbiomac.2019.08.016
|
[7] |
汪磊. 刺梨多糖的分离纯化、降血糖作用及其对肠道微生态的影响[D]. 广州: 华南理工大学, 2019
WANG L. Isolation, purification and hypoglycemic activity of polysaccharides from Rosa roxburghii Tratt fruit and their effect on gut microflora[D]. Guangzhou: South China University of Technology, 2019.
|
[8] |
DOU M D, CHEN C, HUANG Q, et al. Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides[J]. International Journal of Biological Macromolecules, 2021, 183: 1548-1599.
|
[9] |
QIN Y, LI X, LI M, et al. Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity[J]. Journal of Agricultural Food Chemistry,2018,66:4373−4383. doi: 10.1021/acs.jafc.8b00388
|
[10] |
RE R, PELLEGRINI N. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology Medicine,1999,26:1231−1237. doi: 10.1016/S0891-5849(98)00315-3
|
[11] |
MENG Y, SU A, YUAN S, et al. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase[J]. Plant Foods for Human Nutrition,2016,71(4):1−6.
|
[12] |
TONG T, LI J, KO D O, et al. In vitro antioxidant potential and inhibitory effect of seaweed on enzymes relevant for hyperglycemia[J]. Food Science Biotechnology,2014,23(6):2037−2044. doi: 10.1007/s10068-014-0277-z
|
[13] |
LUO X L, QI W, DONG F, et al. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties[J]. International Journal of Biological Macromolecules, 2018, 120: 1461-1467.
|
[14] |
曾红亮. 金桔多糖结构表征及降血脂机理的研究[D]. 福州: 福建农林大学, 2015.
ZENG H L. Structure characterization and hypolipidemic mechanism of polysaccharides from Fortunella margarita (Lour.) Swingle[D]. Fuzhou: Fujian Agriculture and Forest University, 2015
|
[15] |
游丽君, 张云林, 温玲蓉, 等. 不同方法对龙须菜多糖性质的影响[J]. 现代食品科技, 2016, 32(6): 148-155, 182
YOU L J, ZHANG Y L, WEN L, et al. Effect of extraction method on the properties of polysaccharides from Gracilaria lemaneiformis[J]. Modern Food Science and Technology 2016, 32(6): 148-155, 182.
|
[16] |
YAN J K, DING Z C, GAO X L, et al. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions[J]. Carbohydrate Polymers,2018,193:73−382. doi: 10.1016/j.carbpol.2018.03.086
|
[17] |
赵晨淏, 刘钧发, 冯梦莹, 等. 不同提取方法对龙眼多糖性质的影响[J]. 现代食品科技, 2012, 28(10): 1298-1302.
ZHAO C H, LIU J F, FENG M Y, et al. Effect of different extraction methods on the properties of longan polysaccharides[J]. Modern Food Science and Technology, 2012, 28(10): 1298-1302.
|
[18] |
YUAN Q, HE Y, XIANG P Y, et al. Influences of different drying methods on the structural characteristics and multiple bioactivities of polysaccharides from okra (Abelmoschus esculentus)[J]. International Journal of Biological Macromolecules,2020,147:1053−1063. doi: 10.1016/j.ijbiomac.2019.10.073
|
[19] |
LI Q S, WANG L, Li J, et al, Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta[J]. Food Chemistry, 2014, 160: 1-7.
|
[20] |
PAN C, ZHU Y M, ZHU Z Y, et al. Chemical structure and effects of antioxidation and against α-glucosidase of natural polysaccharide from Glycyrrhiza inflata Batalin[J]. International Journal of Biological Macromolecules, 2020, 155: 560-571.
|
[21] |
石德玲, 齐俊华, 卢海燕, 等. 海参硫酸多糖的高温高压降解工艺及其降解机制[J]. 中国海洋生物, 2019, 38(1): 1−10.
SHI D L, QI J H, LU H Y, et al. Hydrothermal degradation process and mechanism of sulfated polysaccharides from sea cucmber[J]. Chinese Journal Marine Drugs, 2019, 38(1): 1−10.
|
[22] |
郭元亨, 张利军, 曹丽丽, 等. 植物多糖中单糖组成分析技术的研究进展[J]. 食品科学,2018,39(1):326−332. [[GUO Y H, ZHANG L J, CAO L L, et al. Recent advances in analytical techniques for monosaccharide composition of plant polysaccharides[J]. Food Science,2018,39(1):326−332. doi: 10.7506/spkx1002-6630-201801049
|
[23] |
苏平, 孙昕, 宋思圆, 等. 提取方法对黄秋葵花多糖的结构组成及抗氧化活性的影响[J]. 食品科学,2018,39(15):1002−6630. [SU P, SUN X, SONG S Y, et al. Effect of extraction method on structure and antioxidant activity of polysaccharides from okra flowers[J]. Food Science,2018,39(15):1002−6630.
|
[24] |
LI W, LIU H M, QIN G Y, et al. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal[J]. Food Chemitry,2017,234:314−322. doi: 10.1016/j.foodchem.2017.05.002
|
[25] |
WANG R, CHEN P, JIA F, et al. Optimization of polysaccharides from Panax japonicus C. A. Meyer by RSM and its anti-oxidant activity[J]. International Journal of Biological Macromolecules,2012,50(2):331−336. doi: 10.1016/j.ijbiomac.2011.12.023
|
[26] |
QIN Y, LIN S, FU Y, et al. Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus)[J]. International Journal of Biological Macromolecules,2019,127:178−186. doi: 10.1016/j.ijbiomac.2019.01.042
|
[27] |
聂琳然, 郝利民, 王滔滔, 等. 不同来源红缘拟层孔菌粗多糖的抗氧化活性[J]. 食品科学,2019,40(19):1002−6630. [NIE L R, HE L M, WANG T T, et al. Antioxidant activity of crude polysaccharides from Fomitopsis pinicola from different geographical origins[J]. Food Science,2019,40(19):1002−6630.
|
[28] |
周洋, 杨得坡, 钱纯果, 等. 阳春砂根茎多糖分离纯化、结构表征及抗氧化活性[J]. 食品与发酵工业,2021,47(16):52−58. [ZHOU Y, YANG D P, QIAN D G, et al. Purification, structural characterization and antioxidant activity of polysaccharide from the rhizome of Amomum villosum Lour[J]. Food Science,2021,47(16):52−58.
|
[29] |
LIU J, ZHAO Y P, WU Q X, et al. Structure characterisation of polysaccharides in vegetable "okra" and evaluation of hypoglycemic activity[J]. Food Chemistry,2018,242:211−216. doi: 10.1016/j.foodchem.2017.09.051
|
[30] |
GONG L, ZHANG, H, NIU, Y, C, et al. A novel alkali extractable polysaccharide from Plantago asiatic L. seeds and its radical-scavenging and bile acid-binding activities[J]. Journal of Agricultural and Food Chemistry, 63: 569-577.
|
[31] |
YAN J K, LI X W, QIAO Z R, et al. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices[J]. Food Chemistry,2019,271:588−596. doi: 10.1016/j.foodchem.2018.08.012
|
[1] | GAO Xiangxin, CHEN Yongfu, Wusigale. Research Progress of Preparation and Application of Probiotic Microencapsulation in Food[J]. Science and Technology of Food Industry, 2023, 44(3): 19-28. DOI: 10.13386/j.issn1002-0306.2022090256 |
[2] | JIANG Zhe-hui, BAO Yi-hong, JIANG Shi-long. Active Factors and Its Food Status Against Sarcopenia[J]. Science and Technology of Food Industry, 2020, 41(2): 317-323. DOI: 10.13386/j.issn1002-0306.2020.02.051 |
[3] | ZHAO Jing, SHI Dong-jie, QU Yan-feng, WANG Hong-mei, LI Jing-hai. Research Progress of Potato Whole Meal Food[J]. Science and Technology of Food Industry, 2019, 40(20): 363-367. DOI: 10.13386/j.issn1002-0306.2019.20.058 |
[4] | LI Jun, DONG Lei, JIANG Fa-tang, XIAO Man. Development of Devices for Measuring the Moisture Contents in Foods[J]. Science and Technology of Food Industry, 2019, 40(8): 297-303. DOI: 10.13386/j.issn1002-0306.2019.08.050 |
[5] | WANG Ya-nan, WANG Xiao-fei, NIU Lin-lin, LEI Zhuang, ZHANG Hai-tang, WANG Zi-liang. Advance in immunoassay of total aflatoxins in food[J]. Science and Technology of Food Industry, 2017, (13): 344-351. DOI: 10.13386/j.issn1002-0306.2017.13.065 |
[6] | LIU Yi-jun, LIU Na, ZHANG Yu-meng. Research progress of food authentication technology[J]. Science and Technology of Food Industry, 2016, (22): 374-383. DOI: 10.13386/j.issn1002-0306.2016.22.065 |
[7] | YIN Yan, ZHANG Wan-gang, ZHOU Guang-hong, XU Xing-lian. Physiological functions of rosemary and its application in food[J]. Science and Technology of Food Industry, 2014, (22): 364-370. DOI: 10.13386/j.issn1002-0306.2014.22.072 |
[8] | LIU Xiao-yi. Risk control standards analysis on food production and processing[J]. Science and Technology of Food Industry, 2014, (06): 49-51. DOI: 10.13386/j.issn1002-0306.2014.06.015 |
[9] | NIU Gai-gai, DENG Jian-chao, LI Lai-hao, YANG Xian-qing, QI Bo, CEN Jian-wei. Accelerated Solvent Extraction and its applications in food analysis[J]. Science and Technology of Food Industry, 2014, (01): 375-380. DOI: 10.13386/j.issn1002-0306.2014.01.048 |
[10] | JIN Hong-guo, LIU Hua-lin, ZHANG Rui, ZHENG Zhi-ming, PENG Zeng-qi, ZHANG Xin-ling, LI Le. Review of analytical methods for the determination of formaldehyde in food[J]. Science and Technology of Food Industry, 2013, (19): 373-377. DOI: 10.13386/j.issn1002-0306.2013.19.058 |