Citation: | XIA Junfang, PAN Miao, QI Naer, et al. The Relationship between Reactive Oxygen Species and Bacillus cereus Biofilms Formation[J]. Science and Technology of Food Industry, 2022, 43(9): 139−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080341. |
[1] |
STENFORS ARNESEN L P, FAGERLUND A, GRANUM P E. From soil to gut: Bacillus cereus and its food poisoning toxins[J]. Fems Microbiology Reviews,2008,32(4):579−606. doi: 10.1111/j.1574-6976.2008.00112.x
|
[2] |
BAJPAI V K, PARK I, KHAN I, et al. (−)-Tetrahydroberberrubine acetate accelerates antioxidant potential andinhibits food associated Bacillus cereus in rice[J]. Food Chemistry,2021,339:127908.
|
[3] |
LUO X R, ZHANG B P, LU Y H, et al. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure[J]. Journal of Hazardous Materials,2022,421:126682. doi: 10.1016/j.jhazmat.2021.126682
|
[4] |
LV R, ZOU M, CHEN W J, et al. Ultrasound: Enhance the detachment of exosporium and decrease the hydrophobicity of Bacillus cereus spores[J]. LWT,2019,116:108473. doi: 10.1016/j.lwt.2019.108473
|
[5] |
PORCELLATO D, SKEIE S B, MELLEGARD H, et al. Characterization of Bacillus cereus sensulato isolates from milk for consumption, phylogenetic identity, potential for spoilage and disease[J]. Food Microbiol,2021,93:103604. doi: 10.1016/j.fm.2020.103604
|
[6] |
KUMARI S, SARKAR P K. Bacillus cereus hazard and control in industrial dairy processing environment[J]. Food Control,2016,69:20−29. doi: 10.1016/j.foodcont.2016.04.012
|
[7] |
FAGERLUND A, DUBOIS T, ØKSTAD O A, et al. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms[J]. PLoS ONE,2014,9:e87532. doi: 10.1371/journal.pone.0087532
|
[8] |
LINDBACK T, MOLS M, BASSET C, et al. CodY, a pleiotropic regulator, influences multicellular behavior and efficient production of virulence factors in Bacillus cereus[J]. Environ Microbiol,2012,14:2233−2246. doi: 10.1111/j.1462-2920.2012.02766.x
|
[9] |
HAYRAPETYAN H, TEMPELAARS M, NIEROPGROOT M, et al. Bacilluscereus ATCC 14579 RpoN (Sigma 54) is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production[J]. PLoS One,2015,10:134872.
|
[10] |
KWON M, HUSSAIN M S, OH D H, et al. Biofilm formation of Bacillus cereus under food-processing-related conditions[J]. Food Sci Biotechnol,2017,26(4):1103−1111. doi: 10.1007/s10068-017-0129-8
|
[11] |
夏俊芳, 卢岩, 古丽娜孜, 等. 四种不同接触表面蜡样芽孢杆菌菌膜形成的影响分析[J]. 食品工业科技,2018,10(38):159−163. [XIA J F, LU Y, GU L N Z, et al. Effects of four kinds of contact surfaceson formation of Bacillus cereus biofilm[J]. Food Industry Technology,2018,10(38):159−163.
|
[12] |
CORCIONIVOSCHI N, ALVAREZ L A, SHARP T H, et al. Mucosal reactive oxygen species decrease virulence by disruptingCampylobacter jejuni phosphotyrosine signaling[J]. Cell Host & Microbe,2012,12(1):47−59.
|
[13] |
SHIVAPRASAD D P, TANEJA N K, LAKRA A, et al. In vitro and in situ abrogation of biofilm formation in E. coli by vitamin C through ROS generation, disruption of quorum sensing and exopolysaccharide production[J]. Food Chem,2021,341:128171. doi: 10.1016/j.foodchem.2020.128171
|
[14] |
SUO Y J, HUANG Y Y, LIU Y H, et al. The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G[J]. Plos One,2012,7(10):e48467. doi: 10.1371/journal.pone.0048467
|
[15] |
WHITE A N, LEARMAN B S, BRAUER A L, et al. Catalase activity is critical for proteus mirabilis biofilm development, extracellular polymeric substance composition, and dissemination during catheter-associated urinary tract infection[J]. Infection and Immunity,2021,89(10):e0017721. doi: 10.1128/IAI.00177-21
|
[16] |
KULKARNI R, ANTALA S, WANG A, et al. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress[J]. Infect Immun,2012,80(11):3804−3811. doi: 10.1128/IAI.00689-12
|
[17] |
VILLA F, REMELLI W, FORLANI F, et al. Effects of chronic sub-lethal oxidative stress on biofilm formation by azotobacter vinelandii[J]. Biofouling,2012,28(8):823−833. doi: 10.1080/08927014.2012.715285
|
[18] |
WANG L, CHONG H Q, JIANG R R. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579[J]. Appl Microbiol Biotechnol,2012,96:1265−1273. doi: 10.1007/s00253-012-3919-1
|
[19] |
张超, 陈国薇, 杨玉萍, 等. 活性氧调节单核细胞增生李斯特菌菌膜形成[J]. 食品科学,2013,34(23):189−192. [ZHANG C, CHEN G W, YANG Y P, et al. Reactive oxygen species (ROS) regulates Listeria monocytogenes biofilm formation[J]. Food Science,2013,34(23):189−192.
|
[20] |
STEPANOVIC S, VUKOVIC D, DAKIC I, et al. A modified microtiter-plate test for quantification of Staphylococcal biofilm formation[J]. Journal of Microbiological Methods,2000,40:175−179. doi: 10.1016/S0167-7012(00)00122-6
|
[21] |
REDER A, HOPER D, GERTH U, et al. Contributions of individual sigma B dependent general stress genes to oxidative stress resistance of Bacillus subtilis[J]. J Bacteriol,2012,194:3601−3610. doi: 10.1128/JB.00528-12
|
[22] |
GUO L, ZHANG C, CHEN G W, et al. Reactive oxygen species inhibit biofilm formation of Listeria monocytogenes[J]. Microbial Pathogenesis,2019,127:183−189. doi: 10.1016/j.micpath.2018.11.023
|
[23] |
GUERINI M, PERUGINI P, GRISOLI P. Evaluation of the effectiveness of N-Acetylcysteine (NAC) and N-acetylcysteine-cyclodextrins multi-composite in Pseudomonas aeruginosa biofilm formation[J]. Applied Science,2020,10:3466. doi: 10.3390/app10103466
|
[24] |
HAJ C, LICHTENBERG M, NIELSEN K L, et al. Catalase protects biofilm of Staphylococcus aureus against daptomycin activity[J]. Antibiotics,2021,10:511. doi: 10.3390/antibiotics10050511
|
[25] |
PAUL P, CHAKRABORTY P, CHATTERJEE A, et al. 1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: A promising approach towards effective management of biofilm threat[J]. Archives of Microbiology,2021,203:1183−1193. doi: 10.1007/s00203-020-02117-1
|
[26] |
刘武康, 吴淑燕, 陈国薇, 等. 细菌产生的活性氧及其功能[J]. 微生物学杂志,2016,36(1):89−95. [LIU W K, WU S Y, CHEN G W, et al. The reactive oxygen species generated by bacteria and its functions[J]. Journal of Microbiology,2016,36(1):89−95. doi: 10.3969/j.issn.1005-7021.2016.01.015
|
[27] |
CAP M, VACHOVA L, PALKOVA Z. Reactive oxygen species in the signaling and adaptation ofmulticellular microbial communities[J]. Oxidative Medicine and Cellular Longevity,2012,13:976753.
|
1. |
邱立,谷贵章,王欣宇,高兴杰,杨文鸽,徐大伦. 浒苔多酚对肥胖小鼠血脂代谢及肠道菌群的调节作用. 核农学报. 2022(08): 1638-1647 .
![]() | |
2. |
王双燕. 壳聚糖及其衍生物在医药领域的研究进展. 云南化工. 2021(04): 7-8+16 .
![]() |