Citation: | QIAO Hanzhen, LIU Jiaqi, YANG Yuansen, et al. Research Progress of Dietary Fiber Intervention in Inflammatory Bowel Disease[J]. Science and Technology of Food Industry, 2022, 43(17): 449−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080310. |
[1] |
NIU W, CHEN X, XU R, et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review[J]. Carbohydrate Polymers,2021,254:1−12.
|
[2] |
NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies[J]. The Lancet,2017,390(10114):2769−2778. doi: 10.1016/S0140-6736(17)32448-0
|
[3] |
NAKADA N, MIKAMI T, HORIE K, et al. Expression of CA2 and CA9 carbonic anhydrases in ulcerative colitis and ulcerative colitis-associated colorectal cancer[J]. Pathology International,2020,70(8):523−532. doi: 10.1111/pin.12949
|
[4] |
张玲, 陈代文, 余冰, 等. 两种类型膳食纤维对BALB/c小鼠结肠细菌群落结构的影响[J]. 微生物学通报,2018,45(2):395−404. [ZHANG L, CHEN D W, YU B, et al. Two dietary fibers influence the bacterial community in the colon of BALB/c mice[J]. Microbiology China,2018,45(2):395−404. doi: 10.13344/j.microbiol.china.170320
ZHANG L, CHEN D W, YU B, et al. Two dietary fibers influence the bacterial community in the colon of BALB/c mice[J]. Microbiology China, 2018, 45(2): 395-404. doi: 10.13344/j.microbiol.china.170320
|
[5] |
QIAO H, SHAO H, ZHENG X, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry,2021,335:1−10.
|
[6] |
ZHANG Q, YU H, XIAO X, et al. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats[J]. PeerJ,2018,6:1−24.
|
[7] |
WILMS E, JONKERS D, SAVELKOUL H, et al. The impact of pectin supplementation on intestinal barrier function in healthy young adults and healthy elderly[J]. Nutrients,2019,11(7):1−16.
|
[8] |
宋亚芳, 裴丽霞, 赵婷婷, 等. 溃疡性结肠炎免疫因素发病机制的研究进展[J]. 医学研究生学报,2019,32(4):432−436. [SONG Y F, PEI L X, ZHAO T T, et al. Research progress on the pathogenesis of immune factors in ulcerative colitis[J]. Journal of Medical Postgraduates,2019,32(4):432−436. doi: 10.16571/j.cnki.1008-8199.2019.04.019
SONG Y F, PEI LX, ZHAO T T, et al. Research progress on the pathogenesis of immune factors in ulcerative colitis[J]. Journal of Medical Postgraduates, 2019, 32(4): 432-436. doi: 10.16571/j.cnki.1008-8199.2019.04.019
|
[9] |
CARUSO R, MATHES T, MARTENS E C, et al. A specific gene-microbe interaction drives the development of Crohn's disease-like colitis in mice[J]. Science Immunology,2019,4(34):1−15.
|
[10] |
KAPLAN G G, WINDSOR J W. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology,2020,18(1):56−66.
|
[11] |
KING D, REULEN R C, THOMAS T, et al. Changing patterns in the epidemiology and outcomes of inflammatory bowel disease in the United Kingdom: 2000-2018[J]. Alimentary Pharmacology & Therapeutics,2020,51(10):922−934.
|
[12] |
QIAO M, YING G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International,2018,110:160−172. doi: 10.1016/j.envint.2017.10.016
|
[13] |
JANG H, SERRA C. Nutrition, epigenetics, and diseases[J]. Clinical Nutrition Research,2014,3(1):1−8. doi: 10.7762/cnr.2014.3.1.1
|
[14] |
黄艳, 窦传字, 刘慧荣, 等. 表观遗传修饰与溃疡性结肠炎[J]. 中国组织工程研究,2015,19(7):1099−1103. [HUANG Y, DOU C Z, LIU H R, et al. Ulcerative colitis and epigenetic modification[J]. Chinese Journal of Tissue Engineering Research,2015,19(7):1099−1103. doi: 10.3969/j.issn.2095-4344.2015.07.021
HUANG Y, DOU C Z, LIU H R, et al. Ulcerative colitis and epigenetic modification[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(7): 1099-1103. doi: 10.3969/j.issn.2095-4344.2015.07.021
|
[15] |
艾静, 王承党. 遗传与环境因素在炎症性肠病发病机制中的作用研究[J]. 国际消化病杂志,2014,34(2):110−113. [AI J, WANG C D. The role of genetic and environmental factors in the pathogenesis of inflammatory bowel disease[J]. International Journal of Digestive Diseases,2014,34(2):110−113. doi: 10.3969/j.issn.1673-534X.2014.02.012
AI J, WANG C D. The role of genetic and environmental factors in the pathogenesis of inflammatory bowel disease[J]. International Journal of Digestive Diseases, 2014, 34(2): 110-113. doi: 10.3969/j.issn.1673-534X.2014.02.012
|
[16] |
BULTMAN S J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer[J]. Molecular Nutrition & Food Research,2017,61(1):1−12.
|
[17] |
KRAUTKRAMER K A, KREZNAR J H, ROMANO K A, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues[J]. Molecular Cell,2016,64(5):982−992. doi: 10.1016/j.molcel.2016.10.025
|
[18] |
FRANK D N, ST AMAND A L, FELDMAN R A, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. PNAS,2007,104(34):13780−13785. doi: 10.1073/pnas.0706625104
|
[19] |
ANANTHAKRISHNAN A N, BERNSTEIN C N, ILIOPOULOS D, et al. Environmental triggers in IBD: A review of progress and evidence[J]. Nature Reviews Gastroenterology & Hepatology,2018,15(1):39−49.
|
[20] |
ALEXA N, SASSON M F A N, RAMAN M M F. Diet in treatment of inflammatory bowel diseases[J]. Clinical Gastroenterology and Hepatology,2019,19(3):425−435.
|
[21] |
李瑶, 黄金莉, 黄娟, 等. 肠道菌群与肠道屏障互作在炎症性肠病中的作用研究进展[J]. 胃肠病学和肝病学杂志,2021,30(1):10−15. [LI Y, HUANG J L, HUANG J, et al. Advance in study on interaction between gut microbiota and intestinal barrier ininflammatory bowel disease[J]. Chinese Journal of Gastroenterology and Hepatology,2021,30(1):10−15. doi: 10.3969/j.issn.1006-5709.2021.01.003
LI Y, HUANG J L, HUANG J, et al. Advance in study on interaction between gut microbiota and intestinal barrier ininflammatory bowel disease[J]. Chinese Journal of Gastroenterology and Hepatology, 2021, 30(1): 10-15. doi: 10.3969/j.issn.1006-5709.2021.01.003
|
[22] |
LEWIS J D, ABREU M T. Diet as a trigger or therapy for inflammatory bowel diseases[J]. Gastroenterology,2017,152(2):398−414. doi: 10.1053/j.gastro.2016.10.019
|
[23] |
杨小冰, 金明玉, 吴小禾, 等. 膳食营养素与炎症性肠病关系研究进展[J]. 食品科学,2019,40(9):309−315. [YANG X B, JIN M Y, WU X H, et al. Progress in understanding the relationship between dietary nutrients and inflammatory bowel disease[J]. Food Science,2019,40(9):309−315. doi: 10.7506/spkx1002-6630-20180129-404
YANG X B, JIN M Y, WU X H, et al. Progress in understanding the relationship between dietary nutrients and inflammatory bowel disease[J]. Food Science, 2019, 40(9): 309-315. doi: 10.7506/spkx1002-6630-20180129-404
|
[24] |
DAY A S, DAVIS R, COSTELLO S P, et al. The adequacy of habitual dietary fiber intake in individuals with inflammatory bowel disease: A systematic review[J]. Journal of the Academy of Nutrition and Dietetics,2021,121(4):688−708. doi: 10.1016/j.jand.2020.12.001
|
[25] |
HUNG T V, SUZUKI T. Dietary fermentable fiber reduces intestinal barrier defects and inflammation in coliticmice[J]. The Journal of Nutrition,2016,146(10):1970−1979. doi: 10.3945/jn.116.232538
|
[26] |
HAMER H M, JONKERS D, VENEMA K, et al. Review article: The role of butyrate on colonic function[J]. Alimentary Pharmacology & Therapeutics,2008,27(2):104−119.
|
[27] |
IRAHA A. Fucoidan enhances intestinal barrier function by upregulating the expression of Claudin-1[J]. World Journal of Gastroenterology,2013,19(33):5500−5507. doi: 10.3748/wjg.v19.i33.5500
|
[28] |
TIAN M, LI D, MA C, et al. Barley leaf insoluble dietary fiber alleviated dextran sulfate sodium-induced mice colitis by modulating gut microbiota[J]. Nutrients,2021,13(3):846. doi: 10.3390/nu13030846
|
[29] |
WEBER C, NALLE S, TRETIAKOVA M, et al. Claudin-1 and Claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation[J]. Laboratory Investigation,2008,10(88):1110−1120.
|
[30] |
GOWRIKUMAR S, AHMAD R, UPPADA S B, et al. Upregulated Claudin-1 expression promotes colitis-associated cancer by promoting β-catenin phosphorylation and activation in Notch/p-AKT-dependent manner[J]. Oncogene,2019,38(26):5321−5337. doi: 10.1038/s41388-019-0795-5
|
[31] |
LEI L, WALKER W A. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium[J]. American Journal of Clinical Nutrition,2001,6(73):1124−1130.
|
[32] |
陈德国, 武华. 复合膳食纤维对溃疡性结肠炎患者肠黏膜屏障功能的影响[J]. 中国医药导报,2013,10(4):34−38. [CHEN D G, WU H. Influence of dietary fiber complex on intestinal mucosa barrier in patients with ulcerative colitis[J]. China Medical Herald,2013,10(4):34−38. doi: 10.3969/j.issn.1673-7210.2013.04.013
CHEN D G, WU H. Influence of dietary fiber complex on intestinal mucosa barrier in patients with ulcerative colitis[J]. China Medical Herald, 2013, 10(4): 34-38. doi: 10.3969/j.issn.1673-7210.2013.04.013
|
[33] |
张睿. 复合膳食纤维对实验性结肠炎大鼠肠黏膜屏障功能的保护作用[D]太原: 山西医科大学, 2010.
ZHANG R. Effect of dietary fiber complex on intestinal mucosal barrier in rats with experimental colitis[D]. Taiyuan: Shanxi Medical University, 2010.
|
[34] |
AHL D, LIU H, SCHREIBER O, et al. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice[J]. Acta Physiologica,2016,217(4):300−310. doi: 10.1111/apha.12695
|
[35] |
田亚针, 张晨曦, 杨涛, 等. 益生菌和粪菌移植调节炎症性肠病的研究进展[J]. 食品科学,2021,42(19):250−259. [TIAN Y Z, ZHANG C X, YANG T, et al. Research progress of probiotics and fecal microbiota transplantation in regulating inflammatory bowel disease[J]. Food Science,2021,42(19):250−259. doi: 10.7506/spkx1002-6630-20200914-166
TIAN Y Z, ZHANG C X, YANG T, et al. Research progress of probiotics and fecal microbiota transplantation in regulating inflammatory bowel disease[J]. Food Science, 2021, 42(19): 250-259. doi: 10.7506/spkx1002-6630-20200914-166
|
[36] |
RAMOS G P, PAPADAKIS K A. Mechanisms of disease: Inflammatory bowel diseases[J]. Mayo Clinic Proceedings,2019,94(1):155−165. doi: 10.1016/j.mayocp.2018.09.013
|
[37] |
DAVIS F P, KANNO Y, O'SHEA J J. A metabolic switch for Th17 pathogenicity[J]. Cell,2015,163(6):1308−1310. doi: 10.1016/j.cell.2015.11.033
|
[38] |
GONCALVES P, ARAUJO J R, DI SANTOJ P. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease[J]. Inflammatory Bowel Diseases,2018,24(3):558−572. doi: 10.1093/ibd/izx029
|
[39] |
CHAMANARA M, RASHIDIAN A, MEHR S E, et al. Melatonin ameliorates TNBS-induced colitis in rats through the melatonin receptors: Involvement of TLR4/MyD88/NF-κB signalling pathway[J]. Inflammopharmacology,2019,27(2):361−371. doi: 10.1007/s10787-018-0523-8
|
[40] |
RYAN M T, O'SHEA C J, COLLINS C B, et al. Effects of dietary supplementation with Laminaria hyperborea, Laminaria digitata, and Saccharomyces cerevisiae on the IL-17 pathway in the porcine colon[J]. Journal of Animal Science,2012,90(4):263−265.
|
[41] |
MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature,2009,461(7268):1282−1286. doi: 10.1038/nature08530
|
[42] |
曹峻菡, 林鹏程, 王艳峰, 等. 海藻膳食纤维改善炎症性肠病(IBD)的作用机制研究进展[J]. 食品与机械,2021,37(6):1−7. [CAO J H, LIN P C, WANG Y F, et al. Research progress on the mechanism of seaweed dietary fiber in improving inflammatory bowel disease (IBD)[J]. Food & Machinery,2021,37(6):1−7. doi: 10.13652/j.issn.1003-5788.2021.06.001
CAO J H, LIN P C, WANG Y F, et al. Research progress on the mechanism of seaweed dietary fiber in improving inflammatory bowel disease (IBD) [J]. Food & Machinery, 2021, 37(6): 1-7. doi: 10.13652/j.issn.1003-5788.2021.06.001
|
[43] |
彭禛菲, 阿依姑丽·艾合麦提, 王妙颖, 等. 野山杏果肉不溶性膳食纤维对小鼠肠道功能及肠道菌群的影响[J]. 食品工业科技,2020,41(8):307−310. [PENG Z F, AYGUL AHMAT, WANG M Y, et al. Effects of insoluble dietary fiber from wild apricot flesh on intestinal function and intestinal flora of mice[J]. Science and Technology of Food Industry,2020,41(8):307−310. doi: 10.13386/j.issn1002-0306.2020.08.049
PENG Z F, AYGUL AHMAT, WANG M Y, et al. Effects of insoluble dietary fiber from wild apricot flesh on intestinal function and intestinal flora of mice[J]. Science and Technology of Food Industry, 2020, 41(8): 307-310. doi: 10.13386/j.issn1002-0306.2020.08.049
|
[44] |
MARKOWIAK P, ŚLIŻEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients,2017,9(9):1−12.
|
[45] |
BERMUDEZ-BRITO M, BORGHUIS T, DANIEL C, et al. L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer patches[J]. Scientific Reports,2018,8(1):1−10.
|
[46] |
SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism[J]. Reviews in Endocrine and Metabolic Disorders,2019,20(4):461−472. doi: 10.1007/s11154-019-09512-0
|
[47] |
SEGAIN J P, DE LA BLETIERE R, BOURREILLE A, et al. Butyrate inhibits inflammatory responses through NF-κB inhibition: Implications for Crohn's disease[J]. Gut,2000,47(3):397−403. doi: 10.1136/gut.47.3.397
|
[48] |
AZUMA K, OSAKI T, IFUKU S, et al. Suppressive effects of cellulose nanofibers-made from adlay and seaweed-on colon inflammation in an inflammatory bowel-disease model[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(1):65−72. doi: 10.1016/j.bcdf.2013.09.006
|
[49] |
YANG L, LIN Q, HAN L, et al. Soy hull dietary fiber alleviates inflammation in BALB/c mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway[J]. Food & Function,2020,11(7):5965−5975.
|
[50] |
CAPITÁN-CAÑADAS F, ORTEGA-GONZÁLEZ M, GUADIX E, et al. Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4[J]. Molecular Nutrition & Food Research,2014,58(5):1098−1110.
|
[51] |
OGAWA K, TAKEUCHI M, NAKAMURA N. Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice[J]. Bioscience, Biotechnology & Biochemistry,2005,69(1):19−25.
|
[52] |
MENDIS M, LECLERC E, SIMSEK S. Arabinoxylan hydrolyzates as immunomodulators in Caco-2 and HT-29 colon cancer cell lines[J]. Food & Function,2017,8(1):220−231.
|
[53] |
ARMSTRONG H, MANDER I, ZHANG Z, et al. Not all fibers are born equal; variable response to dietary fiber subtypes in IBD[J]. Frontiers in Pediatrics,2021,8:1−15.
|
[54] |
SALMAN H, BERGMAN M, DJALDETTI M, et al. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells[J]. Biomedicine & Pharmacotherapy,2008,62(9):579−582.
|
[55] |
YE M B, LIM B O. Dietary pectin regulates the levels of inflammatory cytokines and immunoglobulins in interleukin-10 knockout mice[J]. Journal of Agricultural and Food Chemistry,2010,58(21):11281−11286. doi: 10.1021/jf103262s
|
[56] |
JOO E, YAMANE S, HAMASAKI A, et al. Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice[J]. Nutrition,2013,29(3):549−555. doi: 10.1016/j.nut.2012.09.007
|
[57] |
KOLEVA P, KETABI A, VALCHEVA R, et al. Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats[J]. Plos One,2014,9(11):1−10.
|
[58] |
BIBI S, LEBOW N, ZHU M. Dietary green pea protects against DSS-induced colitis in mice challenged with high-fat diet[J]. Nutrients,2017,9(5):1−10.
|
[59] |
PRAENGAM K, SAHASAKUL Y, KUPRADINUN P, et al. Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice[J]. Food & Function,2017,8(12):4630−4643.
|
[60] |
YING H, LE L R K, CHRISTOPHERSEN C T, et al. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats[J]. Carcinogenesis,2016,4(37):366−375.
|
[61] |
LYU J, ZHANG Y H, TIAN Z Q, et al. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κB activation[J]. International Journal of Biological Macromolecules,2017,98:723−729. doi: 10.1016/j.ijbiomac.2017.02.024
|
[62] |
ECKBURG P B, RELMAN D A. The role of microbes in Crohn's disease[J]. Clinical Infectious Diseases,2007,44(2):256−262. doi: 10.1086/510385
|
[63] |
PROSBERG M, BENDTSEN F, VIND I, et al. The association between the gut microbiota and the inflammatory bowel disease activity: A systematic review and meta-analysis[J]. Scandinavian Journal of Gastroenterology,2016,51(12):1407−1415. doi: 10.1080/00365521.2016.1216587
|
[64] |
YANG B, CHEN H, GAO H, et al. Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation[J]. Journal of Functional Foods,2018,49:61−72. doi: 10.1016/j.jff.2018.08.014
|
[65] |
HÅKANSSON Å, TORMO-BADIA N, BARIDI A, et al. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice[J]. Clinical and Experimental Medicine,2015,15(1):107−120. doi: 10.1007/s10238-013-0270-5
|
[66] |
MORGAN X C, TICKLE T L, SOKOL H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment[J]. Genome Biology,2012,13(9):1−18.
|
[67] |
JEFFERSON A, ADOLPHUS K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: A systematic review[J]. Frontiers in Nutrition,2019,6:1−49. doi: 10.3389/fnut.2019.00001
|
[68] |
SO D, WHELAN K, ROSSI M, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis[J]. The American Journal of Clinical Nutrition,2018,107(6):965−983. doi: 10.1093/ajcn/nqy041
|
[69] |
SOKOL H, LAY C, SEKSIK P, et al. Analysis of bacterial bowel communities of IBD patients: What has it revealed?[J]. Inflammatory Bowel Diseases,2008,14(6):858−867. doi: 10.1002/ibd.20392
|
[70] |
ARMSTRONG H, BORDING-JORGENSEN M, DIJK S, et al. The complex interplay between chronic inflammation, the microbiome, and cancer: Understanding disease progression and what we can do to prevent it[J]. Cancers,2018,10(83):1−29.
|
[71] |
SARTOR R B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics[J]. Gastroenterology,2004,126(6):1620−1633. doi: 10.1053/j.gastro.2004.03.024
|
[72] |
LAM K, KEUNG H, KO K, et al. In vitro fermentation of beta-glucans and other selected carbohydrates by infant fecal inoculum: An evaluation of their potential as prebiotics in infant formula[J]. Bioactive Carbohydrates and Dietary Fibre,2018,14:20−24. doi: 10.1016/j.bcdf.2017.07.009
|
[73] |
ZHAO J, CHEUNG P C K. Fermentation of β-glucans derived from different sources by Bifidobacteria: Evaluation of their bifidogenic effect[J]. Journal of Agricultural and Food Chemistry,2011,59(11):5986−5992. doi: 10.1021/jf200621y
|
[74] |
WONG J M W, de SOUZA R, KENDALL C W C, et al. Colonic health: Fermentation and short chain fatty acids[J]. Journal of Clinical Gastroenterology,2006,40(3):235−243. doi: 10.1097/00004836-200603000-00015
|
[75] |
LI F, HAN Y, CAI X, et al. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice[J]. Food & Function,2020,11(1):1063−1073.
|
[76] |
KIM Y, HWANG S W, KIM S, et al. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota[J]. Gut Microbes,2020,11(4):944−961. doi: 10.1080/19490976.2020.1730149
|
[77] |
WONG C, HARRIS P, FERGUSON L. Potential benefits of dietary fibre intervention in inflammatory bowel disease[J]. International Journal of Molecular Sciences,2016,17(6):1−22.
|
[78] |
YAO C K, STAUDACHER H M. The low-fibre diet: Contender in IBD, or has it had its time?[J]. Lancet Gastroenterol Hepatol,2019,4(5):339. doi: 10.1016/S2468-1253(19)30096-2
|
[79] |
SHANG Q H, LIU H S, LIU S J, et al. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets[J]. Journal of Animal Science,2019,12:4922−4933.
|
[80] |
KOH A, De VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
|
[81] |
LIU H, WALDEN T B, CAI D, et al. Dietary fiber in bilberry ameliorates pre-obesity events in rats by regulating lipid depot, cecal short-chain fatty acid formation and microbiota composition[J]. Nutrients,2019,11(6):1−17.
|
[82] |
桂玲, 黄象男, 朱怀梅, 等. 大豆膳食纤维酶解液抑菌性的研究[J]. 华北农学报,2008,23(1):286−288. [GUI L, HUANG X N, ZHU H M, et al. Bacteriostatic action of the soybean dietary fiber hydrolysate[J]. Acta Agriculturae Boreali-Sinica,2008,23(1):286−288. doi: 10.7668/hbnxb.2008.S1.066
GUI L, HUANG X N, ZHU H M, et al. Bacteriostatic action of the soybean dietary fiber hydrolysate [J]. Acta AgriculturaeBoreali-Sinica, 2008, 23(1): 286-288. doi: 10.7668/hbnxb.2008.S1.066
|
[83] |
刘田, 崔同, 高哲, 等. 山楂膳食纤维的研究进展[J]. 食品研究与开发,2020,41(6):199−204. [LIU T, CUI T, GAO Z, et al. Recent advances in dietary fiber of hawthorn[J]. Food Research and Development,2020,41(6):199−204.
LIU T, CUI T, GAO Z, et al. Recent advances in dietary fiber of hawthorn[J]. Food Research and Development, 2020, 41(6): 199-204.
|
1. |
张珉畅,张艳新,郝佳楠,秦建春,林敏娟. 毛酸浆储藏病原菌分离鉴定和采后保鲜研究. 现代园艺. 2025(11): 1-5+11 .
![]() | |
2. |
杨小叶,王利强. 可食用材料制备液芯酸奶球及其性能研究. 包装与食品机械. 2024(05): 40-48 .
![]() | |
3. |
杨旭. 新型生物保鲜剂在食品微生物防控中的应用. 中外食品工业. 2024(18): 34-36 .
![]() | |
4. |
卢波斯,崔丹丹,沈宏. 海洋菌株Mitsuaria sp. SH-50产嗜热性壳聚糖酶CsnSH50的酶学性质表征及其应用. 现代食品科技. 2023(01): 50-58 .
![]() | |
5. |
吴可,李萌,李莹,马永生,范馨茹,赵前程. 海参贮藏保鲜机理及保鲜技术研究进展. 肉类研究. 2023(02): 46-53 .
![]() | |
6. |
杨絮,鲁淑彦,郭全友. 乳酸链球菌素对高水分烤虾贮藏中品质的影响. 食品工业科技. 2023(10): 330-335 .
![]() | |
7. |
张玉婷,赵思佳,景正义,李腾飞. 壳聚糖-花椒精油保鲜膜对圣女果常温贮藏效果影响. 现代食品. 2023(07): 219-222 .
![]() | |
8. |
李仲堃,李姿萱,刘辰昊,刘春娥. 壳聚糖对无水保活单环刺螠品质的影响. 食品与机械. 2022(05): 127-132 .
![]() | |
9. |
裴诺,杜宇凡,孙洁,汪之和. 超声改性对壳聚糖/淀粉复合膜特性的影响. 食品与发酵工业. 2022(18): 88-94 .
![]() | |
10. |
王晓,李亚娜,范兰兰,李增辉,吴凯旋. 壳聚糖/番茄花青素/ε-聚赖氨酸复合膜的制备与表征. 武汉轻工大学学报. 2022(06): 15-20 .
![]() |