QIAO Hanzhen, LIU Jiaqi, YANG Yuansen, et al. Research Progress of Dietary Fiber Intervention in Inflammatory Bowel Disease[J]. Science and Technology of Food Industry, 2022, 43(17): 449−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080310.
Citation: QIAO Hanzhen, LIU Jiaqi, YANG Yuansen, et al. Research Progress of Dietary Fiber Intervention in Inflammatory Bowel Disease[J]. Science and Technology of Food Industry, 2022, 43(17): 449−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080310.

Research Progress of Dietary Fiber Intervention in Inflammatory Bowel Disease

More Information
  • Received Date: August 26, 2021
  • Available Online: July 02, 2022
  • Inflammatory bowel disease (IBD) is a chronic, recurrent, and refractory inflammatory disease of the gastrointestinal tract, accompanied by inflammatory cell infiltration and damage to the intestinal mucosa, with a certain risk of cancer. A large number of studies have shown that dietary fiber, as a prebiotic, has significant effects in improving intestinal flora structure, strengthening intestinal barrier function, alleviating intestinal inflammation and other aspects, with multiple nutritional and health functions, showing great potential in the intervention of IBD, but the mechanism of action remains unclear. In addition, DFs can be classified into soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) according to their water solubility, which have different characteristics and effects on IBD. Therefore, this paper reviews the basic principles, existing evidence and mechanism of SDF and IDF in the prevention and treatment of IBD, and comprehensively analyzes DFs intervention strategies for IBD, so as to provide reference for further research, development and application of DFs.
  • [1]
    NIU W, CHEN X, XU R, et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review[J]. Carbohydrate Polymers,2021,254:1−12.
    [2]
    NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies[J]. The Lancet,2017,390(10114):2769−2778. doi: 10.1016/S0140-6736(17)32448-0
    [3]
    NAKADA N, MIKAMI T, HORIE K, et al. Expression of CA2 and CA9 carbonic anhydrases in ulcerative colitis and ulcerative colitis-associated colorectal cancer[J]. Pathology International,2020,70(8):523−532. doi: 10.1111/pin.12949
    [4]
    张玲, 陈代文, 余冰, 等. 两种类型膳食纤维对BALB/c小鼠结肠细菌群落结构的影响[J]. 微生物学通报,2018,45(2):395−404. [ZHANG L, CHEN D W, YU B, et al. Two dietary fibers influence the bacterial community in the colon of BALB/c mice[J]. Microbiology China,2018,45(2):395−404. doi: 10.13344/j.microbiol.china.170320

    ZHANG L, CHEN D W, YU B, et al. Two dietary fibers influence the bacterial community in the colon of BALB/c mice[J]. Microbiology China, 2018, 45(2): 395-404. doi: 10.13344/j.microbiol.china.170320
    [5]
    QIAO H, SHAO H, ZHENG X, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry,2021,335:1−10.
    [6]
    ZHANG Q, YU H, XIAO X, et al. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats[J]. PeerJ,2018,6:1−24.
    [7]
    WILMS E, JONKERS D, SAVELKOUL H, et al. The impact of pectin supplementation on intestinal barrier function in healthy young adults and healthy elderly[J]. Nutrients,2019,11(7):1−16.
    [8]
    宋亚芳, 裴丽霞, 赵婷婷, 等. 溃疡性结肠炎免疫因素发病机制的研究进展[J]. 医学研究生学报,2019,32(4):432−436. [SONG Y F, PEI L X, ZHAO T T, et al. Research progress on the pathogenesis of immune factors in ulcerative colitis[J]. Journal of Medical Postgraduates,2019,32(4):432−436. doi: 10.16571/j.cnki.1008-8199.2019.04.019

    SONG Y F, PEI LX, ZHAO T T, et al. Research progress on the pathogenesis of immune factors in ulcerative colitis[J]. Journal of Medical Postgraduates, 2019, 32(4): 432-436. doi: 10.16571/j.cnki.1008-8199.2019.04.019
    [9]
    CARUSO R, MATHES T, MARTENS E C, et al. A specific gene-microbe interaction drives the development of Crohn's disease-like colitis in mice[J]. Science Immunology,2019,4(34):1−15.
    [10]
    KAPLAN G G, WINDSOR J W. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology,2020,18(1):56−66.
    [11]
    KING D, REULEN R C, THOMAS T, et al. Changing patterns in the epidemiology and outcomes of inflammatory bowel disease in the United Kingdom: 2000-2018[J]. Alimentary Pharmacology & Therapeutics,2020,51(10):922−934.
    [12]
    QIAO M, YING G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International,2018,110:160−172. doi: 10.1016/j.envint.2017.10.016
    [13]
    JANG H, SERRA C. Nutrition, epigenetics, and diseases[J]. Clinical Nutrition Research,2014,3(1):1−8. doi: 10.7762/cnr.2014.3.1.1
    [14]
    黄艳, 窦传字, 刘慧荣, 等. 表观遗传修饰与溃疡性结肠炎[J]. 中国组织工程研究,2015,19(7):1099−1103. [HUANG Y, DOU C Z, LIU H R, et al. Ulcerative colitis and epigenetic modification[J]. Chinese Journal of Tissue Engineering Research,2015,19(7):1099−1103. doi: 10.3969/j.issn.2095-4344.2015.07.021

    HUANG Y, DOU C Z, LIU H R, et al. Ulcerative colitis and epigenetic modification[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(7): 1099-1103. doi: 10.3969/j.issn.2095-4344.2015.07.021
    [15]
    艾静, 王承党. 遗传与环境因素在炎症性肠病发病机制中的作用研究[J]. 国际消化病杂志,2014,34(2):110−113. [AI J, WANG C D. The role of genetic and environmental factors in the pathogenesis of inflammatory bowel disease[J]. International Journal of Digestive Diseases,2014,34(2):110−113. doi: 10.3969/j.issn.1673-534X.2014.02.012

    AI J, WANG C D. The role of genetic and environmental factors in the pathogenesis of inflammatory bowel disease[J]. International Journal of Digestive Diseases, 2014, 34(2): 110-113. doi: 10.3969/j.issn.1673-534X.2014.02.012
    [16]
    BULTMAN S J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer[J]. Molecular Nutrition & Food Research,2017,61(1):1−12.
    [17]
    KRAUTKRAMER K A, KREZNAR J H, ROMANO K A, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues[J]. Molecular Cell,2016,64(5):982−992. doi: 10.1016/j.molcel.2016.10.025
    [18]
    FRANK D N, ST AMAND A L, FELDMAN R A, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. PNAS,2007,104(34):13780−13785. doi: 10.1073/pnas.0706625104
    [19]
    ANANTHAKRISHNAN A N, BERNSTEIN C N, ILIOPOULOS D, et al. Environmental triggers in IBD: A review of progress and evidence[J]. Nature Reviews Gastroenterology & Hepatology,2018,15(1):39−49.
    [20]
    ALEXA N, SASSON M F A N, RAMAN M M F. Diet in treatment of inflammatory bowel diseases[J]. Clinical Gastroenterology and Hepatology,2019,19(3):425−435.
    [21]
    李瑶, 黄金莉, 黄娟, 等. 肠道菌群与肠道屏障互作在炎症性肠病中的作用研究进展[J]. 胃肠病学和肝病学杂志,2021,30(1):10−15. [LI Y, HUANG J L, HUANG J, et al. Advance in study on interaction between gut microbiota and intestinal barrier ininflammatory bowel disease[J]. Chinese Journal of Gastroenterology and Hepatology,2021,30(1):10−15. doi: 10.3969/j.issn.1006-5709.2021.01.003

    LI Y, HUANG J L, HUANG J, et al. Advance in study on interaction between gut microbiota and intestinal barrier ininflammatory bowel disease[J]. Chinese Journal of Gastroenterology and Hepatology, 2021, 30(1): 10-15. doi: 10.3969/j.issn.1006-5709.2021.01.003
    [22]
    LEWIS J D, ABREU M T. Diet as a trigger or therapy for inflammatory bowel diseases[J]. Gastroenterology,2017,152(2):398−414. doi: 10.1053/j.gastro.2016.10.019
    [23]
    杨小冰, 金明玉, 吴小禾, 等. 膳食营养素与炎症性肠病关系研究进展[J]. 食品科学,2019,40(9):309−315. [YANG X B, JIN M Y, WU X H, et al. Progress in understanding the relationship between dietary nutrients and inflammatory bowel disease[J]. Food Science,2019,40(9):309−315. doi: 10.7506/spkx1002-6630-20180129-404

    YANG X B, JIN M Y, WU X H, et al. Progress in understanding the relationship between dietary nutrients and inflammatory bowel disease[J]. Food Science, 2019, 40(9): 309-315. doi: 10.7506/spkx1002-6630-20180129-404
    [24]
    DAY A S, DAVIS R, COSTELLO S P, et al. The adequacy of habitual dietary fiber intake in individuals with inflammatory bowel disease: A systematic review[J]. Journal of the Academy of Nutrition and Dietetics,2021,121(4):688−708. doi: 10.1016/j.jand.2020.12.001
    [25]
    HUNG T V, SUZUKI T. Dietary fermentable fiber reduces intestinal barrier defects and inflammation in coliticmice[J]. The Journal of Nutrition,2016,146(10):1970−1979. doi: 10.3945/jn.116.232538
    [26]
    HAMER H M, JONKERS D, VENEMA K, et al. Review article: The role of butyrate on colonic function[J]. Alimentary Pharmacology & Therapeutics,2008,27(2):104−119.
    [27]
    IRAHA A. Fucoidan enhances intestinal barrier function by upregulating the expression of Claudin-1[J]. World Journal of Gastroenterology,2013,19(33):5500−5507. doi: 10.3748/wjg.v19.i33.5500
    [28]
    TIAN M, LI D, MA C, et al. Barley leaf insoluble dietary fiber alleviated dextran sulfate sodium-induced mice colitis by modulating gut microbiota[J]. Nutrients,2021,13(3):846. doi: 10.3390/nu13030846
    [29]
    WEBER C, NALLE S, TRETIAKOVA M, et al. Claudin-1 and Claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation[J]. Laboratory Investigation,2008,10(88):1110−1120.
    [30]
    GOWRIKUMAR S, AHMAD R, UPPADA S B, et al. Upregulated Claudin-1 expression promotes colitis-associated cancer by promoting β-catenin phosphorylation and activation in Notch/p-AKT-dependent manner[J]. Oncogene,2019,38(26):5321−5337. doi: 10.1038/s41388-019-0795-5
    [31]
    LEI L, WALKER W A. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium[J]. American Journal of Clinical Nutrition,2001,6(73):1124−1130.
    [32]
    陈德国, 武华. 复合膳食纤维对溃疡性结肠炎患者肠黏膜屏障功能的影响[J]. 中国医药导报,2013,10(4):34−38. [CHEN D G, WU H. Influence of dietary fiber complex on intestinal mucosa barrier in patients with ulcerative colitis[J]. China Medical Herald,2013,10(4):34−38. doi: 10.3969/j.issn.1673-7210.2013.04.013

    CHEN D G, WU H. Influence of dietary fiber complex on intestinal mucosa barrier in patients with ulcerative colitis[J]. China Medical Herald, 2013, 10(4): 34-38. doi: 10.3969/j.issn.1673-7210.2013.04.013
    [33]
    张睿. 复合膳食纤维对实验性结肠炎大鼠肠黏膜屏障功能的保护作用[D]太原: 山西医科大学, 2010.

    ZHANG R. Effect of dietary fiber complex on intestinal mucosal barrier in rats with experimental colitis[D]. Taiyuan: Shanxi Medical University, 2010.
    [34]
    AHL D, LIU H, SCHREIBER O, et al. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice[J]. Acta Physiologica,2016,217(4):300−310. doi: 10.1111/apha.12695
    [35]
    田亚针, 张晨曦, 杨涛, 等. 益生菌和粪菌移植调节炎症性肠病的研究进展[J]. 食品科学,2021,42(19):250−259. [TIAN Y Z, ZHANG C X, YANG T, et al. Research progress of probiotics and fecal microbiota transplantation in regulating inflammatory bowel disease[J]. Food Science,2021,42(19):250−259. doi: 10.7506/spkx1002-6630-20200914-166

    TIAN Y Z, ZHANG C X, YANG T, et al. Research progress of probiotics and fecal microbiota transplantation in regulating inflammatory bowel disease[J]. Food Science, 2021, 42(19): 250-259. doi: 10.7506/spkx1002-6630-20200914-166
    [36]
    RAMOS G P, PAPADAKIS K A. Mechanisms of disease: Inflammatory bowel diseases[J]. Mayo Clinic Proceedings,2019,94(1):155−165. doi: 10.1016/j.mayocp.2018.09.013
    [37]
    DAVIS F P, KANNO Y, O'SHEA J J. A metabolic switch for Th17 pathogenicity[J]. Cell,2015,163(6):1308−1310. doi: 10.1016/j.cell.2015.11.033
    [38]
    GONCALVES P, ARAUJO J R, DI SANTOJ P. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease[J]. Inflammatory Bowel Diseases,2018,24(3):558−572. doi: 10.1093/ibd/izx029
    [39]
    CHAMANARA M, RASHIDIAN A, MEHR S E, et al. Melatonin ameliorates TNBS-induced colitis in rats through the melatonin receptors: Involvement of TLR4/MyD88/NF-κB signalling pathway[J]. Inflammopharmacology,2019,27(2):361−371. doi: 10.1007/s10787-018-0523-8
    [40]
    RYAN M T, O'SHEA C J, COLLINS C B, et al. Effects of dietary supplementation with Laminaria hyperborea, Laminaria digitata, and Saccharomyces cerevisiae on the IL-17 pathway in the porcine colon[J]. Journal of Animal Science,2012,90(4):263−265.
    [41]
    MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature,2009,461(7268):1282−1286. doi: 10.1038/nature08530
    [42]
    曹峻菡, 林鹏程, 王艳峰, 等. 海藻膳食纤维改善炎症性肠病(IBD)的作用机制研究进展[J]. 食品与机械,2021,37(6):1−7. [CAO J H, LIN P C, WANG Y F, et al. Research progress on the mechanism of seaweed dietary fiber in improving inflammatory bowel disease (IBD)[J]. Food & Machinery,2021,37(6):1−7. doi: 10.13652/j.issn.1003-5788.2021.06.001

    CAO J H, LIN P C, WANG Y F, et al. Research progress on the mechanism of seaweed dietary fiber in improving inflammatory bowel disease (IBD) [J]. Food & Machinery, 2021, 37(6): 1-7. doi: 10.13652/j.issn.1003-5788.2021.06.001
    [43]
    彭禛菲, 阿依姑丽·艾合麦提, 王妙颖, 等. 野山杏果肉不溶性膳食纤维对小鼠肠道功能及肠道菌群的影响[J]. 食品工业科技,2020,41(8):307−310. [PENG Z F, AYGUL AHMAT, WANG M Y, et al. Effects of insoluble dietary fiber from wild apricot flesh on intestinal function and intestinal flora of mice[J]. Science and Technology of Food Industry,2020,41(8):307−310. doi: 10.13386/j.issn1002-0306.2020.08.049

    PENG Z F, AYGUL AHMAT, WANG M Y, et al. Effects of insoluble dietary fiber from wild apricot flesh on intestinal function and intestinal flora of mice[J]. Science and Technology of Food Industry, 2020, 41(8): 307-310. doi: 10.13386/j.issn1002-0306.2020.08.049
    [44]
    MARKOWIAK P, ŚLIŻEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients,2017,9(9):1−12.
    [45]
    BERMUDEZ-BRITO M, BORGHUIS T, DANIEL C, et al. L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer patches[J]. Scientific Reports,2018,8(1):1−10.
    [46]
    SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism[J]. Reviews in Endocrine and Metabolic Disorders,2019,20(4):461−472. doi: 10.1007/s11154-019-09512-0
    [47]
    SEGAIN J P, DE LA BLETIERE R, BOURREILLE A, et al. Butyrate inhibits inflammatory responses through NF-κB inhibition: Implications for Crohn's disease[J]. Gut,2000,47(3):397−403. doi: 10.1136/gut.47.3.397
    [48]
    AZUMA K, OSAKI T, IFUKU S, et al. Suppressive effects of cellulose nanofibers-made from adlay and seaweed-on colon inflammation in an inflammatory bowel-disease model[J]. Bioactive Carbohydrates and Dietary Fibre,2013,2(1):65−72. doi: 10.1016/j.bcdf.2013.09.006
    [49]
    YANG L, LIN Q, HAN L, et al. Soy hull dietary fiber alleviates inflammation in BALB/c mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway[J]. Food & Function,2020,11(7):5965−5975.
    [50]
    CAPITÁN-CAÑADAS F, ORTEGA-GONZÁLEZ M, GUADIX E, et al. Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4[J]. Molecular Nutrition & Food Research,2014,58(5):1098−1110.
    [51]
    OGAWA K, TAKEUCHI M, NAKAMURA N. Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice[J]. Bioscience, Biotechnology & Biochemistry,2005,69(1):19−25.
    [52]
    MENDIS M, LECLERC E, SIMSEK S. Arabinoxylan hydrolyzates as immunomodulators in Caco-2 and HT-29 colon cancer cell lines[J]. Food & Function,2017,8(1):220−231.
    [53]
    ARMSTRONG H, MANDER I, ZHANG Z, et al. Not all fibers are born equal; variable response to dietary fiber subtypes in IBD[J]. Frontiers in Pediatrics,2021,8:1−15.
    [54]
    SALMAN H, BERGMAN M, DJALDETTI M, et al. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells[J]. Biomedicine & Pharmacotherapy,2008,62(9):579−582.
    [55]
    YE M B, LIM B O. Dietary pectin regulates the levels of inflammatory cytokines and immunoglobulins in interleukin-10 knockout mice[J]. Journal of Agricultural and Food Chemistry,2010,58(21):11281−11286. doi: 10.1021/jf103262s
    [56]
    JOO E, YAMANE S, HAMASAKI A, et al. Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice[J]. Nutrition,2013,29(3):549−555. doi: 10.1016/j.nut.2012.09.007
    [57]
    KOLEVA P, KETABI A, VALCHEVA R, et al. Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats[J]. Plos One,2014,9(11):1−10.
    [58]
    BIBI S, LEBOW N, ZHU M. Dietary green pea protects against DSS-induced colitis in mice challenged with high-fat diet[J]. Nutrients,2017,9(5):1−10.
    [59]
    PRAENGAM K, SAHASAKUL Y, KUPRADINUN P, et al. Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice[J]. Food & Function,2017,8(12):4630−4643.
    [60]
    YING H, LE L R K, CHRISTOPHERSEN C T, et al. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats[J]. Carcinogenesis,2016,4(37):366−375.
    [61]
    LYU J, ZHANG Y H, TIAN Z Q, et al. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κB activation[J]. International Journal of Biological Macromolecules,2017,98:723−729. doi: 10.1016/j.ijbiomac.2017.02.024
    [62]
    ECKBURG P B, RELMAN D A. The role of microbes in Crohn's disease[J]. Clinical Infectious Diseases,2007,44(2):256−262. doi: 10.1086/510385
    [63]
    PROSBERG M, BENDTSEN F, VIND I, et al. The association between the gut microbiota and the inflammatory bowel disease activity: A systematic review and meta-analysis[J]. Scandinavian Journal of Gastroenterology,2016,51(12):1407−1415. doi: 10.1080/00365521.2016.1216587
    [64]
    YANG B, CHEN H, GAO H, et al. Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation[J]. Journal of Functional Foods,2018,49:61−72. doi: 10.1016/j.jff.2018.08.014
    [65]
    HÅKANSSON Å, TORMO-BADIA N, BARIDI A, et al. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice[J]. Clinical and Experimental Medicine,2015,15(1):107−120. doi: 10.1007/s10238-013-0270-5
    [66]
    MORGAN X C, TICKLE T L, SOKOL H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment[J]. Genome Biology,2012,13(9):1−18.
    [67]
    JEFFERSON A, ADOLPHUS K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: A systematic review[J]. Frontiers in Nutrition,2019,6:1−49. doi: 10.3389/fnut.2019.00001
    [68]
    SO D, WHELAN K, ROSSI M, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis[J]. The American Journal of Clinical Nutrition,2018,107(6):965−983. doi: 10.1093/ajcn/nqy041
    [69]
    SOKOL H, LAY C, SEKSIK P, et al. Analysis of bacterial bowel communities of IBD patients: What has it revealed?[J]. Inflammatory Bowel Diseases,2008,14(6):858−867. doi: 10.1002/ibd.20392
    [70]
    ARMSTRONG H, BORDING-JORGENSEN M, DIJK S, et al. The complex interplay between chronic inflammation, the microbiome, and cancer: Understanding disease progression and what we can do to prevent it[J]. Cancers,2018,10(83):1−29.
    [71]
    SARTOR R B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics[J]. Gastroenterology,2004,126(6):1620−1633. doi: 10.1053/j.gastro.2004.03.024
    [72]
    LAM K, KEUNG H, KO K, et al. In vitro fermentation of beta-glucans and other selected carbohydrates by infant fecal inoculum: An evaluation of their potential as prebiotics in infant formula[J]. Bioactive Carbohydrates and Dietary Fibre,2018,14:20−24. doi: 10.1016/j.bcdf.2017.07.009
    [73]
    ZHAO J, CHEUNG P C K. Fermentation of β-glucans derived from different sources by Bifidobacteria: Evaluation of their bifidogenic effect[J]. Journal of Agricultural and Food Chemistry,2011,59(11):5986−5992. doi: 10.1021/jf200621y
    [74]
    WONG J M W, de SOUZA R, KENDALL C W C, et al. Colonic health: Fermentation and short chain fatty acids[J]. Journal of Clinical Gastroenterology,2006,40(3):235−243. doi: 10.1097/00004836-200603000-00015
    [75]
    LI F, HAN Y, CAI X, et al. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice[J]. Food & Function,2020,11(1):1063−1073.
    [76]
    KIM Y, HWANG S W, KIM S, et al. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota[J]. Gut Microbes,2020,11(4):944−961. doi: 10.1080/19490976.2020.1730149
    [77]
    WONG C, HARRIS P, FERGUSON L. Potential benefits of dietary fibre intervention in inflammatory bowel disease[J]. International Journal of Molecular Sciences,2016,17(6):1−22.
    [78]
    YAO C K, STAUDACHER H M. The low-fibre diet: Contender in IBD, or has it had its time?[J]. Lancet Gastroenterol Hepatol,2019,4(5):339. doi: 10.1016/S2468-1253(19)30096-2
    [79]
    SHANG Q H, LIU H S, LIU S J, et al. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets[J]. Journal of Animal Science,2019,12:4922−4933.
    [80]
    KOH A, De VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
    [81]
    LIU H, WALDEN T B, CAI D, et al. Dietary fiber in bilberry ameliorates pre-obesity events in rats by regulating lipid depot, cecal short-chain fatty acid formation and microbiota composition[J]. Nutrients,2019,11(6):1−17.
    [82]
    桂玲, 黄象男, 朱怀梅, 等. 大豆膳食纤维酶解液抑菌性的研究[J]. 华北农学报,2008,23(1):286−288. [GUI L, HUANG X N, ZHU H M, et al. Bacteriostatic action of the soybean dietary fiber hydrolysate[J]. Acta Agriculturae Boreali-Sinica,2008,23(1):286−288. doi: 10.7668/hbnxb.2008.S1.066

    GUI L, HUANG X N, ZHU H M, et al. Bacteriostatic action of the soybean dietary fiber hydrolysate [J]. Acta AgriculturaeBoreali-Sinica, 2008, 23(1): 286-288. doi: 10.7668/hbnxb.2008.S1.066
    [83]
    刘田, 崔同, 高哲, 等. 山楂膳食纤维的研究进展[J]. 食品研究与开发,2020,41(6):199−204. [LIU T, CUI T, GAO Z, et al. Recent advances in dietary fiber of hawthorn[J]. Food Research and Development,2020,41(6):199−204.

    LIU T, CUI T, GAO Z, et al. Recent advances in dietary fiber of hawthorn[J]. Food Research and Development, 2020, 41(6): 199-204.
  • Cited by

    Periodical cited type(10)

    1. 张珉畅,张艳新,郝佳楠,秦建春,林敏娟. 毛酸浆储藏病原菌分离鉴定和采后保鲜研究. 现代园艺. 2025(11): 1-5+11 .
    2. 杨小叶,王利强. 可食用材料制备液芯酸奶球及其性能研究. 包装与食品机械. 2024(05): 40-48 .
    3. 杨旭. 新型生物保鲜剂在食品微生物防控中的应用. 中外食品工业. 2024(18): 34-36 .
    4. 卢波斯,崔丹丹,沈宏. 海洋菌株Mitsuaria sp. SH-50产嗜热性壳聚糖酶CsnSH50的酶学性质表征及其应用. 现代食品科技. 2023(01): 50-58 .
    5. 吴可,李萌,李莹,马永生,范馨茹,赵前程. 海参贮藏保鲜机理及保鲜技术研究进展. 肉类研究. 2023(02): 46-53 .
    6. 杨絮,鲁淑彦,郭全友. 乳酸链球菌素对高水分烤虾贮藏中品质的影响. 食品工业科技. 2023(10): 330-335 . 本站查看
    7. 张玉婷,赵思佳,景正义,李腾飞. 壳聚糖-花椒精油保鲜膜对圣女果常温贮藏效果影响. 现代食品. 2023(07): 219-222 .
    8. 李仲堃,李姿萱,刘辰昊,刘春娥. 壳聚糖对无水保活单环刺螠品质的影响. 食品与机械. 2022(05): 127-132 .
    9. 裴诺,杜宇凡,孙洁,汪之和. 超声改性对壳聚糖/淀粉复合膜特性的影响. 食品与发酵工业. 2022(18): 88-94 .
    10. 王晓,李亚娜,范兰兰,李增辉,吴凯旋. 壳聚糖/番茄花青素/ε-聚赖氨酸复合膜的制备与表征. 武汉轻工大学学报. 2022(06): 15-20 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (307) PDF downloads (33) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return