WANG Zhongjiang, GUO Yanan, LIU Shuangqi, et al. Effect of Insoluble Okara Fiber on the Properties of Okara Protein Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 40−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080302.
Citation: WANG Zhongjiang, GUO Yanan, LIU Shuangqi, et al. Effect of Insoluble Okara Fiber on the Properties of Okara Protein Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 40−48. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080302.

Effect of Insoluble Okara Fiber on the Properties of Okara Protein Emulsion

More Information
  • Received Date: August 26, 2021
  • Available Online: December 02, 2022
  • This article explored the effect of insoluble okara fiber (IOF) on the properties of okara protein (SOP) emulsion. The effects of different concentrations of IOF (0.25 wt%, 0.50 wt%, 0.75 wt% and 1.00 wt%) on the microstructure, interfacial activity, emulsifying activity and stability of SOP emulsion were studied with sunflower oil as oil phase. The results showed that with the increase of the IOF concentration, the particle size of the SOP/IOF emulsion showed a trend of gradual increase. The laser confocal microscope observation experiment showed that the emulsion droplets change in the same trend, and the absolute value of the zeta potential presents an increasing trend. The content and concentration of interfacial protein showed an increasing trend, and the change of rheological index showed that the trend of shear thinning was increasing, and high concentration of IOF could significantly enhance the long-term storage stability, acid resistance stability and salt resistance stability of SOP emulsion. This provides a theoretical basis for the further application of IOF in the protein emulsion gel system.
  • [1]
    孙英杰. 超声波处理对大豆分离蛋白结构和功能性质影响研究[D]. 哈尔滨: 东北农业大学, 2014.

    SUN Y J. Effect of ultrasonic treatment on structure and functional properties of soybean protein isolate[D]. Harbin: Northeast Agricultural University, 2014.
    [2]
    徐赏, 华欲飞, 张彩猛. 豆渣蛋白的制备及其性质研究[J]. 中国油脂,2013,38(2):36−39. [XU S, HUA Y F, ZHANG C M. Preparation and properties of soybean residue protein[J]. Chinese Oil,2013,38(2):36−39.
    [3]
    LI B, QIAO M Y, LU F. Composition, nutrition, and utilization of Okara (soybean residue)[J]. Food Reviews International,2012,28(3):231−252. doi: 10.1080/87559129.2011.595023
    [4]
    王鹏, 李贵全. 不同大豆品系农艺与质量性状的灰色关联度分析[J]. 山西农业科学,2012,40(12):1243−1246. [WANG P, LI G Q. Grey correlation analysis of agronomic and quality traits of different soybean lines[J]. Shanxi Agricultural Science,2012,40(12):1243−1246.
    [5]
    祝团结, 郑为完. 大豆豆渣的研究开发现状与展望[J]. 食品研究与开发,2004,25(4):25−28,39. [ZHU T J, ZHENG W W. Research and development status and prospect of soybean residue[J]. Food Research and Development,2004,25(4):25−28,39.
    [6]
    徐赏. 大豆分离蛋白副产物中豆渣蛋白的组分分析及回收[D]. 无锡: 江南大学, 2013.

    XU S. Component analysis and recovery of soybean residue protein in by-product of soybean protein isolate[D]. Wuxi: Jiangnan University, 2013.
    [7]
    李杨, 吴长玲, 马春芳, 等. 低温超微粉碎对豆渣膳食纤维结构及功能特性影响[J]. 食品工业,2019,40(2):160−164. [LI Y, WU C L, MA C F, et al. Effects of low temperature ultrafine comminution on the structure and functional properties of dietary fiber from soybean dregs[J]. Food Industry,2019,40(2):160−164.
    [8]
    涂宗财, 段邓乐, 王辉, 等. 豆渣膳食纤维的结构表征及其抗氧化性研究[J]. 中国粮油学报,2015,30(6):22−26. [TU Z C, DUAN D L, WANG H, et al. Study on structure characterization and antioxidant activity of soybean residue dietary fiber[J]. Chinese Journal of Grain and Oil,2015,30(6):22−26.
    [9]
    王喜波, 王健, 张泽宇, 等. 物理改性对大豆蛋白柔性与乳化性的影响及其相关性分析[J]. 农业机械学报,2017,48(7):339−344. [WANG X B, WANG J, ZHANG Z Y, et al. Effect of physical modification on flexibility and emulsification of soybean protein and its correlation analysis[J]. Journal of Agricultural Machinery,2017,48(7):339−344.
    [10]
    MANASSERO C A, DAVID B E, VAUDAGNA S R, et al. Calcium addition, pH, and high hydrostatic pressure effects on soybean protein isolates—Part 1: Colloidal stability improvement[J]. Food & Bioprocess Technology, 2018, 11: 1125–1138
    [11]
    郭荣佳. 酶解对大豆蛋白结构功能性影响及高乳化起泡性蛋白制备[D]. 哈尔滨: 东北农业大学, 2014.

    GUO R J. Effect of enzymatic hydrolysis on structure and function of soybean protein and preparation of highly emulsified foaming protein[D]. Harbin: Northeast Agricultural University, 2014.
    [12]
    李伟伟. 高乳化性大豆蛋白的制备及其界面流变性质的研究[D]. 无锡: 江南大学, 2017.

    LI W W. Preparation and interfacial rheological properties of highly emulsified soybean protein[D]. Wuxi: Jiangnan University, 2017.
    [13]
    邓若璇. 纳米纤维素作为乳化、稳定剂和膳食纤维的应用研究[D]. 无锡: 江南大学, 2017.

    DENG R X. Application of nano cellulose as emulsification, stabilizer and dietary fiber[D]. Wuxi: Jiangnan University, 2017.
    [14]
    DICKINSON E. Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions[J]. Soft Matter,2008,4(5):932−942. doi: 10.1039/b718319d
    [15]
    覃定奎. 膳食纤维对蛋白包裹型乳液油脂消化的影响及其机制[D]. 杨凌: 西北农林科技大学, 2017.

    TAN D K. Effects of dietary fiber on the digestion of protein encapsulated emulsion and its mechanism[D]. Yangling: Northwest A & F University, 2017.
    [16]
    陈亚非, 赵谋明. 水溶性与水不溶性膳食纤维对油脂、胆固醇和胆酸钠吸附作用研究[J]. 现代食品科技,2005,21(3):58−60. [CHEN Y F, ZHAO M M. Study on the adsorption of oil, cholesterol and sodium cholate by water-soluble and water-insoluble dietary fiber[J]. Modern Food Technology,2005,21(3):58−60.
    [17]
    范宏亮. 微波、超声波提取工艺对大豆种皮多糖乳化性质影响及多糖工厂设计[D]. 锦州: 渤海大学, 2019.

    FAN H L. Effect of microwave and ultrasonic extraction process on emulsifying properties of soybean seed coat polysaccharide and polysaccharide factory design[D]. Jinzhou: Bohai University, 2019.
    [18]
    CHEN B, CAI Y, LIU T, et al. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments[J]. Food Hydrocolloids,2019,93(8):167−175.
    [19]
    RODRÍGUEZ S D, VON S M, PILOSOF A M R. Green tea polyphenols-whey proteins nanoparticles: Bulk, interfacial and foaming behavior[J]. Food Hydrocolloids,2015,50:108−115. doi: 10.1016/j.foodhyd.2015.04.015
    [20]
    LI Y, WU C L, LIU J, et al. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization[J]. Nanomaterials,2018,8(5):307. doi: 10.3390/nano8050307
    [21]
    王喜波, 于洁, 王小丹, 等. 基于美拉德反应的酶改性大豆蛋白冻融稳定性研究[J]. 农业机械学报,2018,49(5):361−367. [WANG X B, YU J, WANG X D, et al. Study on freeze-thaw stability of enzyme modified soybean protein based on Maillard reaction[J]. Journal of Agricultural Machinery,2018,49(5):361−367.
    [22]
    PUPPO C, BEAUMAL, F. SPERONI, et al. β-Conglycinin and glycinin soybean protein emulsions treated by combined temperature-high-pressure treatment[J]. Food Hydrocolloids,2011,25:389−397. doi: 10.1016/j.foodhyd.2010.07.005
    [23]
    LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry,1951,193(1):265−275. doi: 10.1016/S0021-9258(19)52451-6
    [24]
    李良, 张小影, 朱建宇, 等. 大豆-乳清混合蛋白对O/W乳液稳定性及流变性的影响[J]. 农业机械学报,2019,50(12):372−379. [LI L, ZHANG X Y, ZHU J Y, et al. Effect of soybean whey mixed protein on stability and rheological properties of O/W emulsion[J]. Journal of Agricultural Machinery,2019,50(12):372−379.
    [25]
    江连洲, 綦玉曼, 马春芳, 等. 鱼油纳米乳液运载体系构建与稳定性研究[J]. 农业机械学报,2018,49(10):394−402. [JIANG L Z, QI Y M, MA C F. Construction and stability of fish oil nano emulsion delivery system[J]. Journal of Agricultural Machinery,2018,49(10):394−402.
    [26]
    迟玉杰, 张好凯, 迟媛, 等. 高压均质协同高酰基结冷胶对青椒蛋蔬液流变特性及稳定性的影响[J]. 食品科学,2019,40(9):91−98. [CHI Y J, ZHANG H K, CHI Y, et al. Effects of high pressure homogenization and high acyl gellan gum on rheological properties and stability of green pepper egg and vegetable liquid[J]. Food Science,2019,40(9):91−98.
    [27]
    佟臻, 韦阳, 高彦祥. 基于食品级胶体颗粒稳定Pickering乳液的研究进展[J]. 食品工业科技,2019,40(4):317−324. [TONG Z, WEI Y, GAO Y X. Research progress of Pickering emulsion stabilized by food grade colloidal particles[J]. Food Industry Technology,2019,40(4):317−324.
    [28]
    周海媚. 大豆纤维改性粒子制备及其Pickering乳液特性研究[D]. 广州: 华南理工大学, 2017.

    ZHOU H M. Preparation of soybean fiber modified particles and properties of Pickering emulsion[D]. Guangzhou: South China University of Technology, 2017.
    [29]
    孙领鸽, 王丹丹, 毛晓英, 等. 丙烯醛氧化修饰对核桃蛋白结构和乳化特性的影响[J]. 食品科学,2018,39(20):43−48. [SUN L G, WANG D D, MAO X Y, et al. Influence of oxidative modification with acrolein on structural and emulsifying properties of walnut protein[J]. Food Science,2018,39(20):43−48.
    [30]
    李霞. 不同结构纳米纤维素稳定Pickering乳液的作用机制与应用研究[D]. 广州: 华南理工大学, 2019.

    LI X. Study on the mechanism and application of nano emulsion stabilized pickering emulsion with different structures[D]. Guangzhou: South China University of Technology, 2019.
    [31]
    向飞, 吴考, 肖满, 等. 魔芋葡甘聚糖基可食膜的成膜机理研究进展[J]. 食品工业科技,2020,41(5):340−347,353. [XIANG F, WU K, XIAO M, et al. Research progress on film forming mechanism of konjac glucomannan based edible film[J]. Food Industry Technology,2020,41(5):340−347,353.
    [32]
    金伟平. 魔芋葡甘聚糖/明胶/多酚互作行为及微纳组装机制的研究[D]. 武汉: 华中农业大学, 2016.

    JIN W P. Study on interaction behavior and micro nano assembly mechanism of konjac glucomannan/gelatin/polyphenol[D]. Wuhan: Huazhong Agricultural University, 2016.
    [33]
    王金梅. 大豆蛋白热聚集行为及界面、乳化性质研究[D]. 广州: 华南理工大学, 2012.

    WANG J M. Study on thermal aggregation behavior, interfacial and emulsifying properties of soybean protein[D]. Guangzhou: South China University of Technology, 2012.
    [34]
    LIU L, ZHAO Q, LIU T, et al. Sodium caseinate/carboxymethylcellulose interactions at oil-water interface: Relationship to emulsion stability[J]. Food Chemistry,2012,132(4):1822−1829. doi: 10.1016/j.foodchem.2011.12.014
    [35]
    陈先鑫. 不同抗氧化剂对蛋白乳液稳定性及油脂体外消化特性影响的研究[D]. 南昌: 南昌大学, 2016.

    CHEN X X. Effects of different antioxidants on stability of protein emulsions and in vitro digestibility of oils[D]. Nanchang: Nanchang University, 2016.
    [36]
    龙肇. 蛋白质—多糖交互作用对高乳脂乳浊液稳定性的影响及作用机理研究[D]. 广州: 华南理工大学, 2014.

    LONG Z. Effect of protein polysaccharide interaction on the stability of high fat emulsion and its mechanism[D]. Guangzhou: South China University of Technology, 2014.
    [37]
    金星, 迟涛, 于鑫欣, 等. 热处理乳清蛋白对凝固型酸乳凝胶质量的影响[J]. 食品工业科技,2018,39(16):42−48. [JIN X, CHI T, YU X X, et al. Effect of heat treated whey protein on the quality of solidified yogurt gel[J]. Food Industry Technology,2018,39(16):42−48.
    [38]
    李薇, 郑炯, 陈映衡, 等. 超声波处理对豌豆淀粉糊化、流变及质构特性的影响[J]. 食品与机械,2018,34(5):32−37. [LI W, ZHENG J, CHEN Y H, et al. Effects of ultrasonic treatment on gelatinization, rheology and texture properties of pea starch[J]. Food and Machinery,2018,34(5):32−37.
    [39]
    宁方建. 花生蛋白富硒特性及其纳米粒子稳定的皮克林乳液研究[D]. 南昌: 南昌大学, 2019.

    NING F J. Selenium enriched characteristics of peanut protein and stable Pickering emulsion of nanoparticles[D]. Nanchang: Nanchang University, 2019.
    [40]
    王启明, 唐瑜婉, 杨雅轩, 等. pH值对麦醇溶蛋白-槲皮素相互作用及其Pickering乳液特性的影响[J]. 食品科学,2020,41(20):27−34. [WANG Q M, TANG Y W, YANG Y X, et al. Effects of pH on the interaction between gliadin and quercetin and the properties of Pickering emulsion[J]. Food Science,2020,41(20):27−34.
    [41]
    PROTONOTARIOU S, EVAGELIOU V, YANNIOTIS S, et al. The influence of different stabilizers and salt addition on the stability of model emulsions containing olive or sesame oil[J]. Journal of Food Engineering,2013,117(1):124−132. doi: 10.1016/j.jfoodeng.2013.01.044
    [42]
    汪菁琴. 动态超高压均质对大豆分离蛋白改性的研究[D]. 南昌: 南昌大学, 2007.

    WANG J Q. Study on modification of soybean protein isolate by dynamic ultra-high pressure homogenization[D]. Nanchang: Nanchang University, 2007.
    [43]
    卢薇, 黄晓梅, 韦翠兰, 等. 小麦蛋白酶解产物/槲皮素/甜菜果胶复合乳液的构建及表征[J]. 现代食品科技,2019,35(11):193−198. [LU W, HUANG X M, WEI C L, et al. Construction and characterization of wheat protein hydrolysate/quercetin/beet pectin composite emulsion[J]. Modern Food Technology,2019,35(11):193−198.
    [44]
    钟明明, 齐宝坤, 赵添, 等. 大豆亲脂蛋白-羟丙基甲基纤维素乳液制备及其稳定性[J]. 食品科学,2019,40(18):41−47. [ZHONG M M, QI B K, ZHAO T, et al. Preparation and stability of soybean lipoprotein hydroxypropyl methyl cellulose emulsion[J]. Food Science,2019,40(18):41−47.
    [45]
    陈冬, 张晓阳, 刘尧政, 等. 姜油纳米乳液超声波乳化制备工艺及其稳定性研究[J]. 农业机械学报,2016,47(6):250−258. [CHEN D, ZHANG X Y, LIU Y Z, et al. Study on preparation and stability of ginger oil nano emulsion by ultrasonic emulsification[J]. Journal of Agricultural Machinery,2016,47(6):250−258.
    [46]
    赵玲玲, 张红运, 范宏亮, 等. pH, Na+和Ca2+对大豆种皮果胶类多糖乳化稳定性的影响[J]. 中国粮油学报,2019,34(1):30−36. [ZHAO L L, ZHANG H Y, FAN H L, et al. Effects of pH, Na+ and Ca2+ on emulsifying stability of pectin polysaccharides from soybean seed coat[J]. Chinese Journal of Grain and Oil,2019,34(1):30−36.
  • Cited by

    Periodical cited type(2)

    1. 贾成雨,刘畅,林洪,曹立民,王凯强,隋建新. 鲨鱼单域抗体融合蛋白的克隆表达、稳定性及检测性能研究. 食品安全质量检测学报. 2024(03): 117-124 .
    2. 刘明刚,杨慧娟,白宇琛,窦磊娜,于雪芝,王战辉,沈建忠. 单域抗体在有害小分子检测领域的研究进展. 食品安全质量检测学报. 2021(19): 7804-7812 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (188) PDF downloads (24) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return