DONG Caihong, WEN Qingyu, LI Tianqi, et al. Optimization of the Technology for Preparing Salty Wheat Gluten Protein Hydrolysate by Compound Enzyme Method[J]. Science and Technology of Food Industry, 2022, 43(3): 222−230. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080296.
Citation: DONG Caihong, WEN Qingyu, LI Tianqi, et al. Optimization of the Technology for Preparing Salty Wheat Gluten Protein Hydrolysate by Compound Enzyme Method[J]. Science and Technology of Food Industry, 2022, 43(3): 222−230. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080296.

Optimization of the Technology for Preparing Salty Wheat Gluten Protein Hydrolysate by Compound Enzyme Method

More Information
  • Received Date: August 25, 2021
  • Available Online: December 08, 2021
  • The aim of this study was to optimize the preparation process of salty enzymatic hydrolysate of wheat gluten protein and to investigate its saltiness and molecular weight. Based on single factor experiment, Box-Behnken response surface methodology was used to optimize the preparation process of salty enzymatic hydrolysate of wheat gluten protein, with taking enzyme addition, enzymatic hydrolysis pH, substrate concentration and enzymatic hydrolysis temperature as the factors, and hydrolysis degree as the index, and its saltiness was determined by electronic tongue measures; its molecular weight distributions were determined by high performance liquid chromatography. The results showed that the optimal process for preparing wheat gluten protein salty enzymatic hydrolysate was substrate concentration 4.9%, enzymatic hydrolysis temperature 55.7 ℃, pH7.4, and compound enzyme addition amount 3799 U/g(protein). Under these conditions, the degree of hydrolysis of the salty wheat gluten protein hydrolysate was (33.12%±0.45%), and the difference between the measured value and the the oretical value was small, indicating that this model can be used to optimize the preparation process of the salty wheat gluten protein hydrolysate. The salty taste of the salty wheat gluten protein hydrolysate(2%) prepared by this method was (7.63±0.02), and the molecular weight distribution was mainly concentrated below 1000 Da. This study lays the foundation for further research to obtain salty wheat gluten protein peptides.
  • [1]
    黄文垒, 毕继才, 闫寒. 咸味肽研究进展[J]. 食品工业,2020,41(10):261−264. [HUANG W L, BI J C, YAN H. Advances in salty peptides[J]. The Food Industry,2020,41(10):261−264.
    [2]
    吴定, 高云. 食品营养与卫生保健[M]. 北京: 中国计量出版社, 2008: 190−191

    WU D, GAO Y. Food nutrition and health care[M]. Beijing: China Metrology Press, 2008: 190−191.
    [3]
    SUNG K H. Dietary salt intake and hypertension[J]. Electrolytes & Blood Pressure,2014,12(1):7−18.
    [4]
    MICKLEBOROUGH T D, FOGARTY A. Dietary sodium intake and asthma: An epidemiological and clinical review[J]. International Journal of Clinical Practice,2010,60(12):1616−1624.
    [5]
    CAPPUCCIO F P, BEER M, STRAZZULLO P. Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from the European Salt Action Network[J]. Nutrition, Metabolism & Cardiovascular Diseases,2019,29:107−114.
    [6]
    PENZ E D, JOFFRES M R, CAMPBELL N R. Reducing dietary sodium and decreases in cardiovascular disease in Canada[J]. Canadian Journal of Cardiology,2008,24(6):497−501. doi: 10.1016/S0828-282X(08)70625-1
    [7]
    AJANI U A, DUNBAR S B, FORD E S, et al. Sodium intake among people with normal and high blood pressure[J]. American Journal of Preventive Medicine,2005,29(5):63−67. doi: 10.1016/j.amepre.2005.07.008
    [8]
    广少芬. 成年人膳食钠和膳食钾摄入与抑郁症的关系研究[D]. 青岛: 青岛大学, 2019

    GUANG S F. Study on the relationship between dietary sodium and potassium intake and depression in adults[D]. Qingdao: Qingdao University, 2019.
    [9]
    张杰, 赵志峰, 郝罗, 等. 减盐策略及低钠盐研究进展[J]. 中国调味品,2021,46(3):179−184. [ZHANG J, ZHAO Z F, HAO L, et al. Salt reduction strategy and research progress of low sodium salt[J]. China Condiment,2021,46(3):179−184. doi: 10.3969/j.issn.1000-9973.2021.03.037
    [10]
    张雅玮, 郭秀云, 彭增起. 食盐替代物研究进展[J]. 肉类研究,2011,25(2):36−38. [ZHANG Y W, GUO X Y, PENG Z Q. A review of research progress in salt substitutes[J]. Meat Reserch,2011,25(2):36−38. doi: 10.3969/j.issn.1001-8123.2011.02.009
    [11]
    王欣, 安灿, 陈美龄, 等. 酶水解哈氏仿对虾蛋白提高咸味的研究[J]. 中国调味品,2017,42(5):12−16. [WANG X, AN C, CHEN M L, et al. Enzymatic hydrolysis of Parapenaeopsis hardwickii(Miers) protein for enhancing saltiness[J]. China Condiment,2017,42(5):12−16. doi: 10.3969/j.issn.1000-9973.2017.05.004
    [12]
    李迎楠, 刘文营, 张顺亮, 等. 色谱纯化和质谱分析法研究牛骨源咸味肽[J]. 肉类研究,2016(3):25−28. [LI Y N, LIU W Y, ZHANG S L, et al. Separation, purification and analysis of salty peptides derived from bovine bone by chromatography and mass spectrometry[J]. Meat Reserch,2016(3):25−28.
    [13]
    SCHINDLER A, DUNKEL A, STÄHLER F, et al. Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach[J]. Journal of Agricultural and Food Chemistry,2011,59(23):12578−12588. doi: 10.1021/jf2041593
    [14]
    彭增起. 一种多肽食盐替代物及其制备方法: 中国, 201110121195.1[P]. 2011-10-26

    PENG Z Q. A polypeptide salt substitute and its preparation method: China, 201110121195.1 [P]. 2011-10-26.
    [15]
    杨文君, 段杉, 崔春. 豌豆蛋白深度酶解制备咸味肽的研究[J]. 中国调味品,2021,46(8):1−5. [YANG W J, DUAN S, CUI C. Study on preparation of salty peptides by deep enzymatic hydrolysis of pea protein[J]. China Condiment,2021,46(8):1−5. doi: 10.3969/j.issn.1000-9973.2021.08.001
    [16]
    SUETSUNA K, CHEN J R. Isolation and characterization of peptides with antioxidant activity derived from wheat gluten[J]. Food Science and Technology Research,2002,8(3):227−230. doi: 10.3136/fstr.8.227
    [17]
    周世成. 小麦蛋白抗菌肽的制备及其特性研究[D]. 郑州: 河南工业大学, 2011.

    ZHOU S C. The studies on preparation and properties of antimicrobial peptides from wheat gluten[D]. Zhengzhou: Henan University of Technology, 2011.
    [18]
    ZHANG P, CHANG C, LIU H, et al. Identification of novel angiotensin I-converting enzyme(ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa[J]. Journal of Functional Foods,2020,65:103751. doi: 10.1016/j.jff.2019.103751
    [19]
    孙媛, 孔祥珍, 华欲飞. 小麦面筋蛋白含半胱氨酸小麦肽的富集与表征[J]. 食品与发酵工业,2020,46(19):64−69. [SUN Y, KONG X Z, HUA Y F. Enrichment and characterization of cysteine-containing peptides in wheat gluten protein[J]. Food and Fermentation Industries,2020,46(19):64−69.
    [20]
    崔春, 钱杨鹏, 彭睆睆, 等. 谷朊粉发酵液中鲜味肽的分离、鉴定与呈味分析[J]. 现代食品科技,2015,31(9):175−179. [CUI C, QIAN Y P, PENG H H, et al. Isolation, purification, identification, and sensory evaluation of umami peptide in wheat gluten fermentation broth[J]. Modern Food Science and Technology,2015,31(9):175−179.
    [21]
    刘伯业. 小麦蛋白低苦味肽的制备及其脱苦机理研究[D]. 无锡: 江南大学, 2017

    LIU B Y. Study on the preparation of low-bitterness peptide powders from gluten and debittering mechanism[D]. Wuxi: Jiangnan University, 2017.
    [22]
    刘英丽, 张慧娟, 王静, 等. 酶解花生粕制备抗氧化肽工艺研究[J]. 中国食品学报,2014,14(8):62−68. [LIU Y L, ZHANG H J, WANG J, et al. Study on the preparation of antioxidant peptides by enzymatic hydrolysis of peanut meal[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(8):62−68.
    [23]
    陈瑞霞, 孙思远, 相悦, 等. 以淘汰蛋鸡为原料利用蛋白酶解技术制备咸味增强肽[J]. 食品与发酵工业,2020,46(1):166−171. [CHEN R X, SUN S Y, XIANG Y, et al. Optimization of enaymatic hydrolysis for rejected hen protein forsalt-enhanced peptides preparation[J]. Food and Fermentation Industries,2020,46(1):166−171.
    [24]
    任娇艳, 史传超, 常博, 等. 核桃蛋白的分离制备及其酶解物的抗氧化特性[J]. 现代食品科技,2019,35(3):118−124. [REN J Y, SHI C C, CHANG B, et al. Separation and preparation of walnut protein and antioxidant properties of its enzymatic hydrolysate[J]. Modern Food Science and Technology,2019,35(3):118−124.
    [25]
    王金水. 酶解_膜超滤改性小麦面筋蛋白功能特性研究[D]. 广州: 华南理工大学, 2007

    WANG J S. Functional properties of modified wheat gluten by enzymatic hydrolysis-membrane ultrafiltration[D]. Guangzhou: South China University of Technology, 2007.
    [26]
    马诗文, 高云, 代西龙, 等. 碱性蛋白酶酶解绿豆蛋白制备低聚肽工艺优化[J]. 食品工业,2019,40(6):62−65. [MA S W, GAO Y, DAI X L, et al. Optimization of the preparation of oligopeptides with mung bean protein treated by alcalase protease[J]. Food Industry,2019,40(6):62−65.
    [27]
    李宁, 刘红芝, 刘丽, 等. 中性蛋白酶分步酶解花生分离蛋白制备花生短肽的研究[J]. 中国农业科学,2013,46(24):5237−5247. [LI N, LIU H Z, LIU L, et al. Preparation of peanut oligopeptides from peanut protein isolated by neutral proteinase stepping hydrolysis[J]. Scientia Agricultura Sinica,2013,46(24):5237−5247. doi: 10.3864/j.issn.0578-1752.2013.24.018
    [28]
    宁芯, 罗志辉, 墨紫梅, 等. 响应面法优化莜麦蛋白的酶解工艺及酶解物抗氧化活性的研究[J]. 粮食与饲料工业,2019(6):25−29. [NING X, LUO Z H, MO Z M, et al. Optimization of enzymatic hydrolysis technology of naked oat protein and antioxidant activity of hydrolysates by response surface method[J]. Cereal & Feed Industry,2019(6):25−29.
    [29]
    SHU G W, SHI X Y, CHEN H, et al. Optimization of goat milk with ACE inhibitory peptides fermented by Lactobacillus bulgaricus LB6 using response surface methodology[J]. Molecules,2017,22(11):2001. doi: 10.3390/molecules22112001
    [30]
    YANG J, HUANG J C, ZHU Z S, et al. Investigation of optimal conditions for production of antioxidant peptides from duck blood plasma: Response surface methodology[J]. Poultry Science, 2020, 99(12).
    [31]
    包怡红, 王銮, 李倩, 等. 响应面法优化酶解红松松仁粕制备抗氧化肽[J]. 中国酿造,2018,37(7):150−155. [BAO Y H, WANG L, LI Q, et al. Optimization of enzymatic hydrolysis of Pinus koraiensis nut meal to prepare antioxidant peptidesby response surface methodology[J]. China Brewing,2018,37(7):150−155. doi: 10.11882/j.issn.0254-5071.2018.07.030
    [32]
    裴斐, 陶虹伶, 蔡丽娟, 等. 响应面试验优化辣木叶多酚超声辅助提取工艺及其抗氧化活性[J]. 食品科学,2016,37(20):24−30. [PEI F, TAO H L, CAI L J, et al. Optimization of polyphenols from Moringa oleifera Lam. leaves by ultrasound-assisted extraction using response surface methodology and their antioxidant activities[J]. Food Science,2016,37(20):24−30. doi: 10.7506/spkx1002-6630-201620005
    [33]
    KADAM S U, TIWARI B K, SMYTH T J. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology[J]. Ultrasonics Sonochemistry,2015(23):308−316.
    [34]
    彭易鑫, 陆旭丽, 代亚萍, 等. 响应面法优化复合酶酶解制备可口革囊星虫胶原蛋白抗氧化肽工艺研究[J]. 食品工业科技,2021,22(42):231−240. [PENG Y X, LU X L, DAI Y P, et al. Optimization of the preparation of collagen antioxidant peptides from Phascolosoma esculenta by compound enzymatichydrolysis by response surface methodology[J]. Science and Technology of Food Industry,2021,22(42):231−240.
    [35]
    徐永霞, 曲诗瑶, 赵洪雷, 等. 鳀鱼蒸煮液及酶解液的风味特性分析[J]. 现代食品科技,2019,35(12):267−275. [XU Y X, QU S Y, ZHAO H L, et al. Analysis of flavor characteristics in engraulis japonicas cooking liquid and enzymatic hydrolysates[J]. Modern Food Science & Technology,2019,35(12):267−275.
    [36]
    LIOE H N, KINJO A, YASUDA S, et al. Taste and chemical characteristics of low molecular weight fractions from tofuyo– Japanese fermented soybean curd[J]. Food Chemistry,2018,252:265−270. doi: 10.1016/j.foodchem.2018.01.117
  • Cited by

    Periodical cited type(6)

    1. 李宁洁,景炳年,王伟,刘雨晴,谢晓阳,董跟来,王学方,魏磊. 五月艾营养成分、活性物质及重金属含量测定与分析. 生物技术进展. 2025(01): 102-109 .
    2. 景炳年,常霞,魏磊,谢晓阳,周雍,王志尧,刘雨晴,王伟. 博爱县赤松茸营养成分、生物活性物质及重金属含量分析与评价. 食品工业科技. 2022(04): 278-285 . 本站查看
    3. 吴孟华,邓静,张英,李杰,黄建香,林泽斌,曹晖. 岭南鲍姑艾(红脚艾)的品种考证. 中药材. 2022(01): 235-241 .
    4. 农彦贤,郝红梅,叶志杰,彭慎,谭冬明,李玉英. 红蓝草主要营养成分分析与评价. 广东化工. 2021(10): 234-237 .
    5. 沈宏桂,刘立萍,罗宏泉,陈慧,贺鹏. ICP-AES法对怀化地区艾草的21种矿质元素分析. 农业与技术. 2021(20): 74-76 .
    6. 梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (223) PDF downloads (13) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return