Citation: | XIE Hong, WANG Xueming, ZHANG Hongyi, et al. Dynamic Accumulation Analysis on the Effective Components and Preliminary Clarification Process Study on the Water Extract of Stevia rebaudiana Bertoni[J]. Science and Technology of Food Industry, 2022, 43(1): 253−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080224. |
[1] |
BARROSO M R, MARTINS N, BARROS L, et al. Assessment of the nitrogen fertilization effect on bioactive compounds of frozen fresh and dried samples of Stevia rebaudiana Bertoni[J]. Food Chemistry,2018,243:208−213. doi: 10.1016/j.foodchem.2017.09.137
|
[2] |
王少甲, 尤飒飒. 甜叶菊功能性成分研究进展[J]. 食品工业科技,2017,38(20):323−327. [WANG S J, YOU S S. Progress of functional components in Stevia rebaudiana Bertoni[J]. Science and Technology of Food Industry,2017,38(20):323−327.
|
[3] |
刘琼, 潘芸芸, 吴卫. 甜叶菊化学成分及药理活性研究进展[J]. 天然产物研究与开发,2018,30:1085−1091. [LIU Q, PAN Y Y, WU W. Review on chemical compositions and pharmacological activities of Stevia rebaudiana (Bertoni) Hemsl
J]. Natural Product Research and Development,2018,30:1085−1091.
|
[4] |
徐健, 李维林. 甜菊糖药理作用及生产工艺研究进展[J]. 食品与发酵工业,2013,39(10):207−214. [XU J, LI W L. The research progress of pharmacological effect and processing technology of stevia sugar[J]. Food and Fermentation Industries,2013,39(10):207−214.
|
[5] |
LEMUS-MONDACA R, VEGA-GÁLVEZ A, ZURA-BRAVO L, et al. Stevia rebaudiana Bertoni, source of a high-potency natural sweeter: A comprehensive review on the biochemical, nutritional and functional aspects[J]. Food Chemistry,2012,132:1121−1132. doi: 10.1016/j.foodchem.2011.11.140
|
[6] |
OLSSON K, CARLSEN S, SEMMLER A, et al. Microbial production of next-generation stevia sweeteners[J]. Microbial Cell Factories,2016,15:207−220. doi: 10.1186/s12934-016-0609-1
|
[7] |
LIN M, WANG F, ZHU Y. Modeled structure-based computational redesign of a glycosyltransferase for the synthesis of rebaudioside D from rebaudioside A[J]. Biochemical Engineering Journal,2020,159:107626. doi: 10.1016/j.bej.2020.107626
|
[8] |
吴则东, 马龙彪, 周艳丽, 等. 甜菊糖的生物合成、转化与糖基化[J]. 中国糖料,2018,40(2):58−60. [WU Z D, MA L B, ZHOU Y L, et al. Biosynthesis, transformation and glycosylation of steviol glycosides[J]. Sugar Crops of China,2018,40(2):58−60.
|
[9] |
BARROSO M, BARROS L, ÂNGELO RODRIGUES M, et al. Stevia rebaudiana Bertoni cultivated in Portugal: A prospective study of its antioxidant potential in different conservation conditions[J]. Industrial Crops and Products,2016,90:49−55. doi: 10.1016/j.indcrop.2016.06.013
|
[10] |
朱文卿, 任汉书, 徐美霞, 等. 咖啡酰奎宁酸类化合物的生物学活性及提高其生物利用度技术研究进展[J]. 食品科学,2021,42(3):321−329. [ZHU W Q, REN H S, XU M X, et al. Advances in research on biological activity and bioavailability of caffeoylquinic acids[J]. Food Science,2021,42(3):321−329. doi: 10.7506/spkx1002-6630-20200102-021
|
[11] |
郭志龙, 马治华, 张虹, 等. 不同甜叶菊品种叶中绿原酸类成分的比较研究[J]. 广西植物,2020,40(5):696−705. [GUO Z L, MA Z H, ZHANG H, et al. Variation of chlorogenic acid components in leaves of various Stevia rebaudiana cultivars[J]. Guihaia,2020,40(5):696−705. doi: 10.11931/guihaia.gxzw201901024
|
[12] |
李云聪, 牛志平, 徐美利, 等. 甜叶菊与其他植物中绿原酸类成分对比分析[J]. 中国食品添加剂,2021(1):1−6. [LI Y C, NIU Z P, XU M L, et al. Comparative analysis of chlorogenic acids in stevia and other plants[J]. China Food Additives,2021(1):1−6.
|
[13] |
SERFATY M, IBDAH M, FISCHER R, et al. Dynamics of yield components and stevioside production in Stevia rebaudiana grown under different planting times, plant stands and harvest regime[J]. Industrial Crops and Products,2013,50:731−736. doi: 10.1016/j.indcrop.2013.08.063
|
[14] |
罗庆云, 林英英, 谢越盛, 等. 甜叶菊植株体内RA及STV分布和积累动态[J]. 中国糖料,2014(1):13−18. [LUO Q Y, LIN Y Y, XIE Y S, et al. Distribution and accumulation of RA and STV in stevia cultivars seedling[J]. Sugar Crops of China,2014(1):13−18. doi: 10.3969/j.issn.1007-2624.2014.01.005
|
[15] |
YONEDA Y, NAKASHIMA H, MIYASAKA J, et al. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana[J]. Phytochemistry,2017,137:57−65. doi: 10.1016/j.phytochem.2017.02.002
|
[16] |
谢捷, 刘小景, 朱兴一, 等. 壳聚糖澄清甜叶菊水提液及其澄清机理探讨[J]. 食品科学,2011,32(20):1−6. [XIE J, LIU X J, ZHU X Y, et al. Application of chitosan flocculation method in clarification of water extract from Stevia rebaudiana Bertoni leaves and flocculation mechanism analysis[J]. Food Science,2011,32(20):1−6.
|
[17] |
赵磊, 林文轩, 迟茜, 等. 甜叶菊废渣提取物抑菌活性及抑菌稳定性研究[J]. 食品工业科技,2016,37(24):168−172. [ZHAO L, LIN W X, CHI Q, et al. Antibacterial activity and stability of Stevia rebaudiana waste extract[J]. Science and Technology of Food Industry,2016,37(24):168−172.
|
[18] |
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品添加剂 甜菊糖苷: GB8270-2014 [S]. 北京: 中国标准出版社, 2014: 1−8.
National Health and Family Planning Commission of the People’s Republic of China. National food safety standard of steviol glycosides in food additive: GB8270-2014[S]. Beijing: China Standard Press, 2014: 1−8.
|
[19] |
谢虹, 陈云, 梁建生. 甜叶菊花和叶中酚类成分分析及含量测定[J]. 食品研究与开发,2021,42(9):151−157. [XIE H, CHEN Y, LIANG J S. Analysis and determination of phenolic compounds in flowers and leaves of Stevia rebaudiana Bertoni[J]. Food Research and Development,2021,42(9):151−157. doi: 10.12161/j.issn.1005-6521.2021.09.022
|
[20] |
张虹, 张芮, 薄玉瑶, 等. 甜叶菊甜菊醇糖苷生物合成关键酶基因表达量与莱宝迪苷A含量的相关关系[J]. 分子植物育种,2015,13(8):1802−1807. [ZHANG H, ZHANG R, BO Y Y, et al. Correlation between thetranscript levels of key enzyme-encoding genes and the content of rebaudioside a in steviol glycoside biosynthesis of Stevia rebaudiana[J]. Molecular Plant Breeding,2015,13(8):1802−1807.
|
[21] |
朱静雯, 郭书巧, 束红梅, 等. 甜菊糖苷积累与其生物合成基因表达的关系[J]. 植物遗传资源学报,2017,18(4):747−753. [ZHU J W, GUO S Q, SHU H M, et al. The relationship between steviol glycosides accumulation and biosynthesis genes expression[J]. Journal of Plant Genetic Resources,2017,18(4):747−753.
|
[22] |
唐桃霞, 王致和, 张秀华, 等. 不同品种(系)甜叶菊产量·光合生理和糖苷含量的相关性分析[J]. 安徽农业科学,2019,47(21):53−57. [TANG T X, WANG Z H, ZHANG X H, et al. Correlation analysis between photosynthetic physiology, glycosidic content and yield of different varieties (strains) of stevia[J]. Journal of Anhui Agricultural Sciences,2019,47(21):53−57. doi: 10.3969/j.issn.0517-6611.2019.21.017
|
[23] |
孙玉明, 张婷, 徐晓洋, 等. 氮素和光照对甜菊生长、氮素吸收和甜菊糖苷相关指标的影响[J]. 植物资源与环境学报,2021,30(2):12−18,34. [SUN Y M, ZHANG T, XU X Y, et al. Effects of nitrogen and light on growth, nitrogen uptake, and steviol glycosides related indexes of Stevia rebaudiana[J]. Journal of Plant Resources and Environment,2021,30(2):12−18,34. doi: 10.3969/j.issn.1674-7895.2021.02.02
|
[24] |
YANG T, ZHANG J, KE D, et al. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations[J]. Nature Communications,2019,10:3214. doi: 10.1038/s41467-019-11154-4
|
[25] |
周明, 沈勇根, 朱丽琴, 等. 植物黄酮化合物生物合成、积累及调控的研究进展[J]. 食品研究与开发,2016,37(18):216−221. [ZHOU M, SHEN Y G, ZHU L Q, et al. Research progress on biosynthesis, accumulation and regulation of flavonoids in plants[J]. Food Research and Development,2016,37(18):216−221. doi: 10.3969/j.issn.1005-6521.2016.18.052
|
[26] |
TAVARINI S, PAGANO I, GUIDI L, et al. Impact of nitrogen supply on growth, steviol glycosides and photosynthesis in Stevia rebaudiana Bertoni[J]. Plant Biosystems,2016,150(5):953−962. doi: 10.1080/11263504.2014.993743
|
[27] |
WANG H, WANG X, YU C, et al. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar[J]. BMC Plant Biology,2020,20:173. doi: 10.1186/s12870-020-02389-1
|
[28] |
王玲娜, 姚佳欢, 马超美. 绿原酸的研究进展[J]. 食品与生物技术学报,2017,36(11):1121−1130. [WANG L N, YAO J H, MA C M. Advances in research on chlorogenic acid[J]. Journal of Food Science and Biotechnology,2017,36(11):1121−1130. doi: 10.3969/j.issn.1673-1689.2017.11.001
|
[29] |
孙阳, 黄和, 胡燚. 绿原酸提取纯化方法的研究进展[J]. 化学试剂,2017,39(3):257−262. [SUN Y, HUANG H, HU Y. Progress on extraction and purification of chlorogenic acid[J]. Chemical Reagents,2017,39(3):257−262.
|
[30] |
额尔敦巴雅尔, 赵鹏宇, 焦利卫, 等. 甜叶菊水提物和絮凝上清液成分差异研究[J]. 食品研究与开发,2017,38(18):143−149. [EERDUNBAYAER, ZHAO P Y, JIAO L W, et al. The study of the differences of compositions between water extract and flocculation supernatant from Stevia rebaudiana[J]. Food Research and Development,2017,38(18):143−149.
|
[31] |
王郑, 仲米贵, 黄雷, 等. 聚合氯化铝-壳聚糖复合絮凝剂对腐殖酸的絮凝特性研究[J]. 环境工程,2017,35(10):61−65,76. [WANG Z, ZHONG M G, HUANG L, et al. Study on flocculation characteristics of humic acid by poly aluminum chloride-chitosan composite flocculant[J]. Environmental Engineering,2017,35(10):61−65,76.
|
[1] | WU Yaogang, HE Yuke, ZHAO Zhou, YU Hui, GUO Zhiqiang, XIAO Juan. Analysis of Nutrient and Fatty Acid Composition of Different By-products of Yellowfin Tuna in South China Sea[J]. Science and Technology of Food Industry, 2024, 45(22): 254-262. DOI: 10.13386/j.issn1002-0306.2024010074 |
[2] | YU Xinyu, LI Shanshan, TAO Lingchen, ZHANG Guozhi, HU Fuliang. Recent Advances in Determination Methods of Fatty Acid Markers in Royal Jelly[J]. Science and Technology of Food Industry, 2023, 44(3): 499-507. DOI: 10.13386/j.issn1002-0306.2022040049 |
[3] | ZHAO Yuehan, HOU Zhaohua, GUO Honglian. Analysis of Fatty Acids, Amino Acids, Cholesterol Nutrition Components in Six Poultry Eggs[J]. Science and Technology of Food Industry, 2022, 43(10): 323-330. DOI: 10.13386/j.issn1002-0306.2021080200 |
[4] | ZHENG Xiaoshan, JI Hongwu, ZHANG Zewei, ZHANG Di, ZHOU Ying, TANG Zhendong, SUN Weizhen, LIU Shucheng, SONG Wenkui. Changes of Lipid and Fatty Acid Composition in Shrimps (Litopenaeus vannamei) before and after Hot-air-drying[J]. Science and Technology of Food Industry, 2022, 43(10): 87-93. DOI: 10.13386/j.issn1002-0306.2021080216 |
[5] | YANG Shao-ling, QI Bo, LI Lai-hao, DENG Jian-chao, HU Xiao, WU Yan-yan, HAO Shu-xian. Composition Analysis and Evaluation of Amino Acids and Fatty Acids in Natural Shark Fin Cartilage[J]. Science and Technology of Food Industry, 2018, 39(13): 14-18,24. DOI: 10.13386/j.issn1002-0306.2018.13.003 |
[6] | YUAN Jia-jia, MAO Lin-chun, REN Xing-chen, LU Wen-jing. Optimization of ultrasonic- assisted extraction conditions and fatty acids components analysis of seed oil in Perilla frutescens[J]. Science and Technology of Food Industry, 2016, (19): 227-231. DOI: 10.13386/j.issn1002-0306.2016.19.036 |
[7] | YAN Kai- qin, SU Ke- ying, XU Yang- hui, TANG Jia- ying, WU Qing. Optimization of pre- column derivatization condition of fatty acid by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2016, (14): 54-58. DOI: 10.13386/j.issn1002-0306.2016.14.002 |
[8] | ZHAO Yan, TU Yong-gang, LI Jian-ke, DENG Wen-hui, SHAO Lan-lan. Determination of fatty acids composition in fermented whole egg yolk[J]. Science and Technology of Food Industry, 2013, (23): 336-339. DOI: 10.13386/j.issn1002-0306.2013.23.064 |
[9] | LIANG Jun-yu, YIN Zhen-xiong, ZHAO Bao-tang, SONG Shen, GAO Qing-ya, YAO Jian, ZHANG Ji. Extraction of xanthocera seeds oil by the method of ultrasound and aqueous enzymatic and fatty acid evaluation[J]. Science and Technology of Food Industry, 2013, (23): 254-259. DOI: 10.13386/j.issn1002-0306.2013.23.040 |
[10] | WANG Zhen, LI Jun, GUO Xiao-guan, PANG Hong-yu. Determination of fatty acids in marinated meat by gas chromatography-quadrupole mass spectrometry[J]. Science and Technology of Food Industry, 2013, (18): 68-71. DOI: 10.13386/j.issn1002-0306.2013.18.023 |
1. |
赵克东,阮长青,李志江,汤华成,王长远. 超声辅助制备抗性淀粉研究进展. 食品工业科技. 2025(05): 8-16 .
![]() | |
2. |
张楚佳,贾健辉,高嫚,王泽冉,刘颖,窦博鑫,张娜. 3种物理方法制备抗性粳米淀粉的结构与物化特性. 中国食品学报. 2025(01): 193-207 .
![]() | |
3. |
聂童巧,邱永婷,袁传勋,金日生. 复合酶法制备高直链玉米抗性淀粉工艺研究及其结构表征. 食品科技. 2024(12): 258-266 .
![]() | |
4. |
曹策. RS3型抗性淀粉的制备及在食品工业中的应用研究进展. 安徽农学通报. 2023(19): 100-105 .
![]() |