SHEN Xiaoqian, ZHANG Meng, ZHOU Wei, et al. Effect of pH and Ionic Strength on the Pickering Emulsion Stability of Bagasse Nanocellulose[J]. Science and Technology of Food Industry, 2022, 43(6): 102−108. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080207.
Citation: SHEN Xiaoqian, ZHANG Meng, ZHOU Wei, et al. Effect of pH and Ionic Strength on the Pickering Emulsion Stability of Bagasse Nanocellulose[J]. Science and Technology of Food Industry, 2022, 43(6): 102−108. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080207.

Effect of pH and Ionic Strength on the Pickering Emulsion Stability of Bagasse Nanocellulose

More Information
  • Received Date: August 19, 2021
  • Available Online: January 11, 2022
  • Cellulose nanocrystalline (cncs) were prepared from bagasse as raw material to stabilize the Pickering emulsion to examine the effect of pH and ionic strength on emulsion stability. The results showed that the CNCs obtained by hydrolysis had a length of about 120 nm and a crystallinity of 70%. The particle size of the Pickering emulsion stabilized by CNCs decreased with the increase of the pH value of the preparation conditions. Under the condition of pH 11, the emulsion was relatively uniform due to deprotonation. In addition, the particle size of the Pickering emulsion stabilized by CNCs increased with the concentration of salt ions. At a concentration of 100 mmol/L, the electrostatic repulsion reduced due to the electrostatic shielding effect of salt ions, the emulsion broke, and the layering became more obvious. The experimental results showed that bagasse CNCs had potential in preparing Pickering emulsion as solid particles, and would provide new ideas for the utilization of bagasse.
  • [1]
    ARACELI G, ALESSANDRO G, JALEL L, et al. Industrial and crop wastes: A new source for nanocellulose biorefinery[J]. Industrial Crops & Products,2016,93:26−38.
    [2]
    PATCHIYA P, PRASERT R, HAO X G, et al. Nanocellulose: Extraction and application[J]. Carbon Resources Conversion,2018,1(1):32−43. doi: 10.1016/j.crcon.2018.05.004
    [3]
    陈媛, 张欢, 余永, 等. 纤维素纳米晶稳定Pickering 乳液及其环境响应性研究进展[J]. 食品与发酵工业,2020,46(24):238−245. [CHEN Y, ZHANG H, YU Y, et al. Progress in stability of Pickering elotion and its environmental responsiveness[J]. Food and Fermentation Industry,2020,46(24):238−245.
    [4]
    林荣珍. 甘蔗渣综合利用发展现状探讨[J]. 企业科技与发展,2020(6):62−64. [LIN R Z. Discussion on the development status of the comprehensive utilization of sugar bagasse[J]. Science and Technology and Development,2020(6):62−64. doi: 10.3969/j.issn.1674-0688.2020.11.023
    [5]
    芦长椿. 纤维素资源的开发及利用新进展[J]. 纺织导报,2021(3):38−40. [LU C C. New progress in the development and utilization of cellulose resources[J]. Textile Herald,2021(3):38−40. doi: 10.3969/j.issn.1003-3025.2021.03.018
    [6]
    LI Z, WU H R, YANG M, et al. Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose[J]. Carbohydrate Polymers,2018,181:224−233. doi: 10.1016/j.carbpol.2017.10.080
    [7]
    LIANG E L, SANGANGTAPRIVY. S, YONG K H, et al. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion[J]. Advances in Colloid and Interface Science,2020,277:102−117.
    [8]
    佟臻, 韦阳, 高彦祥. 基于食品级胶体颗粒稳定Pickering乳液的研究进展[J]. 食品工业科技,2019,40(4):317−324. [[TONG Z, WEI Y, GAN Z X. Progress in stabilizing Pickering emulsion based on food-grade colloidal particles[J]. Science and Technology of Food Industry,2019,40(4):317−324.
    [9]
    SUN X J, SUN X F, ZHAN H, et al. Isolation and characterization of cellulose from sugarcane bagasse[J]. Polymer Degradation and Stability,2004,84(2):331−339. doi: 10.1016/j.polymdegradstab.2004.02.008
    [10]
    THUNNALIN W, MANOP S. Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer[J]. Food Hydrocolloids,2013,32:383−394. doi: 10.1016/j.foodhyd.2013.01.023
    [11]
    范柳萍, 倪洋, 段慧. 白果壳纤维素纳米丝(CNFs)的制备及其在Pickering中的应用[J]. 粮油食品科技,2021,29(3):54−60. [FAN L P, NI Y, DUAN H. Preparation of ginkgo-shell cellulose nanometer filaments and its application in Pickering[J]. Grain & Oil Science and Technology,2021,29(3):54−60.
    [12]
    YANG N, LI J W, FAN L P. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions[J]. Biological Macromolecules,2020,149:617−626. doi: 10.1016/j.ijbiomac.2020.01.263
    [13]
    LI J H, WEI X Y, WANG Q H, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers,2012,90(4):1609−1613. doi: 10.1016/j.carbpol.2012.07.038
    [14]
    WEI X Y, WANG Y H, LI J H, et al. Effects of temperature on cellulose hydrogen bonds during dissolution in ionic liquid[J]. Carbohydrate Polymers,2018,201:387−391. doi: 10.1016/j.carbpol.2018.08.031
    [15]
    HU X Y, HU K, ZENG L L, et al. Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study[J]. Carbohydrate Polymers,2010,82(1):62−68. doi: 10.1016/j.carbpol.2010.04.023
    [16]
    MANDAL A, CHAKRABARTY D. Isolation of nanocellulose from waste sugarcane bagasse(SCB) and its characterization[J]. Carbohydrate Polymers,2011,86(3):1291−1299. doi: 10.1016/j.carbpol.2011.06.030
    [17]
    李霞. 不同结构纳米纤维素稳定 Pickering乳液的作用机制与应用研究[D]. 广州: 华南理工大学, 2019

    LI X. The mechanism and application of Pickering emulsion[D]. Guangzhou: Institutes of Technology of South China, 2019.
    [18]
    KASIRI N, FATHI M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions[J]. International Journal of Biological Macromolecules,2018,106:1023−1031. doi: 10.1016/j.ijbiomac.2017.08.112
    [19]
    HUANG Z L, HUANG X B. Fabrication and stability of Pickering emulsions using moringa seed residue protein: Effect of pH and ionic strength[J]. International Journal of Food Science and Technology,2021,56:3484−3494. doi: 10.1111/ijfs.14975
    [20]
    金克霞. 毛竹纤维素纳米晶导电薄膜制备及电磁屏蔽性能研究[D]. 北京: 中国林业科学研究院, 2020

    JIN K X. Preparation and electromagnetic shielding properties of bamboo cellulose nanocrystalline conductive film[D]. Beijing: Chinese Academy of Forestry Sciences, 2020.
    [21]
    RAM B, CHA H. New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions[J]. Chemical Engineering Journal,2018,331:587−596. doi: 10.1016/j.cej.2017.08.128
    [22]
    MORIANA R, VILAPIANA R. Cellulose nanocrystals from forest residues as reinforcing agents for composites: A study from macro-to nano-dimensions[J]. Carbohydrate Polymers,2016,139:139−149. doi: 10.1016/j.carbpol.2015.12.020
    [23]
    GARVEY C J, PARKER I H. On the interpretation of X-Ray diffraction powder patterns in term of the nanostructure of cellulose I fibres[J]. Macromolecular Chemistry and Physics,2005,206(15):1568−1575. doi: 10.1002/macp.200500008
    [24]
    LI X, LI J, GONG J, et al. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions[J]. Carbohydrate Polymers,2018,183:303−310. doi: 10.1016/j.carbpol.2017.12.085
    [25]
    何康慧. 竹笋水不溶性膳食纤维稳定Pickering乳液及其应用[D]. 武汉: 华中农业大学, 2020

    HE K H. Bamboo shoot water-soluble dietary fiber stabilized Pickering emulsion and its application[D]. Wuhan: Huazhong Agricultural University, 2020.
    [26]
    翟希川. 细菌纤维素纳米纤维的制备及其稳定的 Pickering乳液的特性研究[D]. 西安: 陕西师范大学, 2019

    ZHAI X C. Preparation of bacterial cellulose nanofibers and stable Pickering emulsion[D]. Xi’an: Shaanxi Normal University, 2019.
    [27]
    SOUZA G, FERREIRA R, PAULA C, et al. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils[J]. Journal of Molecular Liquids, 2020, 320(PB).
    [28]
    SHIMA S. Nanocellulose for stabilization of pickering emulsions and delivery of nutraceuticals and its interfacial adsorption mechanism[J]. Food and Bioprocess Technology: An International Journal,2020,13(8):1292−1328. doi: 10.1007/s11947-020-02481-2
    [29]
    DONG H, DING Q J, JIANG Y F, et al. Pickering emulsions stabilized by spherical cellulose nanocrystals[J]. Carbohydrate Polymers,2021,265:118101−118101. doi: 10.1016/j.carbpol.2021.118101
    [30]
    陆宇. 基于纳米纤维素的Pickering乳液的制备与研究[D]. 扬州: 扬州大学, 2020

    LU Y. Preparation and study of Pickering emulsion based on nanoflulose[D]. Yangzhou: Yangzhou University, 2020.
  • Cited by

    Periodical cited type(20)

    1. 罗密,尹旺,郭崇韬,邓仁菊,付梅,包维嘉. 不同品种甘薯的淀粉结构与理化特性. 贵州农业科学. 2025(01): 10-17 .
    2. 罗密,尹旺,邓仁菊,关郁芳,潘牧,吴巧玉,付梅. 基于主成分分析和聚类分析对不同品种甘薯淀粉与粉条品质的综合评价. 食品工业科技. 2025(04): 246-257 . 本站查看
    3. 金喜龙,丁杨,王中利,孟新莉,李斌. 糯质高粱酿造凤香型白酒初探. 酿酒. 2025(02): 109-113 .
    4. 罗密,郭崇韬,关郁芳,尹旺,邓仁菊,包维嘉. 不同紫甘薯品种淀粉理化特性的比较分析. 粮食与油脂. 2025(04): 21-27+75 .
    5. 盛周杨,邹波,吴继军,肖更生,徐玉娟,余元善,陈晓维,钟思彦. 木薯淀粉和改性淀粉结构特性及其与粉圆品质的关系. 广东农业科学. 2024(01): 127-135 .
    6. 宋永,贾璐泽,张一婷,刘佳莉,刘大军,孙庆申. 金冠豆角籽粒淀粉组成及性质研究. 食品工业科技. 2024(07): 59-67 . 本站查看
    7. 莫祥秋,张明波,窦德强. 双波长法测定人参中淀粉含量. 中国现代中药. 2024(07): 1150-1156 .
    8. 冉腾飞,夏茹,李永鹏,高娅,杨才,黄安柱,田山君. 蔓薯并长期遮荫对商薯19淀粉加工品质及营养品质的影响. 山东农业科学. 2024(11): 44-51 .
    9. 胡方洋,邓健,张得祥,刘彩华,麦馨允,朱正杰. 凯特芒果淀粉的提取及其性质研究. 食品与生物技术学报. 2024(10): 163-172 .
    10. 赵灿,陶星宇,汤尚文,刘传菊,豁银强,张倩. 甘薯淀粉对山药凝胶肠理化特性的影响. 中国粮油学报. 2023(02): 58-65 .
    11. 陈炜璇,庄婉娴,吴迁迁,何恒涛,胡海茵,孙若欣,宋贤良. 紫米粉圆感官评价及质构特性的相关性分析. 食品与机械. 2023(03): 11-16+22 .
    12. 唐云,闫海彦,赵亚雄,郇丹,宗文文,宋菲红. 碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨. 食品工业科技. 2023(13): 272-280 . 本站查看
    13. 卜庆状,邹雪梅,郝晓莉,詹德江. 4种消除高粱直链淀粉测定中支链淀粉干扰的方法比较. 食品工业. 2023(06): 295-298 .
    14. 刘建垒,商博,邢晓婷,张东,常柳,孙辉,段晓亮. 4种方法测定小米直链淀粉含量的比较. 食品科学. 2023(12): 217-224 .
    15. 许鑫,王斌,崔波. 可生物降解改性淀粉基薄膜的特性及应用研究进展. 食品工业科技. 2023(15): 474-481 . 本站查看
    16. 王庆宇,周平,王贵军,倪靖岳,李徐森,钟帅,李威,罗明宇. 不同品种糯高粱酿造酱香型白酒对比研究. 中国酿造. 2023(08): 65-70 .
    17. 王立,殷剑美,韩晓勇,蒋璐,郭文琦,金林,张培通. 芋可溶性淀粉合成酶CeSS基因家族的克隆和表达分析. 江苏农业学报. 2023(04): 939-946 .
    18. 邹浩峰,廖雨华,黄师荣,隋勇,熊添,施建斌,蔡沙,蔡芳,梅新. 不同生物酶协同植物乳杆菌发酵对紫甘薯生全粉理化特性的影响. 中国粮油学报. 2023(08): 213-220 .
    19. 许丽蓉,李闯,刘洋,黄璇,张旭,邓萍,戴求仲,夏敏,蒋桂韬,范志勇. 稻谷对鹅的营养价值评定及代谢能预测. 动物营养学报. 2023(11): 7192-7200 .
    20. 赵令敏,张艳芳,邢丽南,葛明然,刘小燕,霍秀文. 山药异淀粉酶基因克隆及其在淀粉代谢中的作用. 西北植物学报. 2022(11): 1827-1834 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return