HUANG Yujuan, WANG Haoyi, HUANG Yongchun, et al. Effect of Hydraulic Cavitation Modification on the Aggregation Structure of Corn Starch[J]. Science and Technology of Food Industry, 2022, 43(8): 111−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080187.
Citation: HUANG Yujuan, WANG Haoyi, HUANG Yongchun, et al. Effect of Hydraulic Cavitation Modification on the Aggregation Structure of Corn Starch[J]. Science and Technology of Food Industry, 2022, 43(8): 111−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080187.

Effect of Hydraulic Cavitation Modification on the Aggregation Structure of Corn Starch

More Information
  • Received Date: August 18, 2021
  • Available Online: February 15, 2022
  • In order to explore the influence of hydraulic cavitation modification on the aggregate structure and physicochemical properties of corn starch, this experiment took corn starch as the research object, and treated it with hydraulic cavitation for 10, 20, 30, 40 and 50 min, respectively. After treatment, the particle size distribution, microscopic morphology structure, crystalline structure, molecular short-range order structure, the swelling power and solubility of corn starch were tested. The results showed that after hydrodynamic cavitation treatment of starch, the average particle size of corn starch granules increased, conical cracks and unevenly distributed circular pores appeared on the surface of starch granules, and the relative crystallinity increased from 22.25% to 29.23%. The degree of molecular short-range order first increased and then decreased, the swelling power increased from 9.87 to 13.10 g·g−1, and the solubility increased from 8.94% to 11.76%. The cavitation effect produced by hydraulic cavitation could change the aggregated structure of corn starch.
  • [1]
    PALANISAMY C P, CUI B, ZHANG H X, et al. A comprehensive review on corn starch-based nanomaterials: Properties, simulations, and applications[J]. Polymers,2020,12(9):E2161. doi: 10.3390/polym12092161
    [2]
    马先红, 张文露, 张铭鉴. 玉米淀粉的研究现状[J]. 粮食与油脂,2019,32(2):4−6. [MA X H, ZHANG W L, ZHANG M J. Research status of corn starch[J]. Cereals & Oils,2019,32(2):4−6.
    [3]
    张江宁, 丁卫英, 张玲, 等. 糯玉米淀粉在食品中应用的研究进展[J]. 农产品加工,2019(11):87−88. [ZHANG J N, DING W Y, ZHANG L, et al. Research progress on the application of waxy corn starch in food[J]. Farm Products Processing,2019(11):87−88.
    [4]
    宋洋. 玉米淀粉糖的潜在应用[J]. 中国化工贸易,2018,10(5):128. [SONG Y. Potential application of corn starch sugar[J]. China Chemical Trade,2018,10(5):128.
    [5]
    羊云龙, 金晓亮. 变性玉米淀粉的性质及其应用研究[J]. 种子科技,2018,36(5):83. [YANG Y L, JING X L. Study on properties and application of modified maize starch[J]. Seed Science & Technology,2018,36(5):83.
    [6]
    刘张虎. 关于变性淀粉在食品工业中的应用思考[J]. 科技展望,2015,25(22):242. [LIU Z H. Thinking about the application of modified starch in food industry[J]. Technology Outlook,2015,25(22):242.
    [7]
    曹英, 夏文, 王飞, 等. 物理改性对淀粉特性影响的研究进展[J]. 食品工业科技,2019,40(21):315−319,325. [CAO Y, XIA W, WANG F, et al. Research progress on the effect of physical modification on starch properties[J]. Science and Technology of Food Industry,2019,40(21):315−319,325.
    [8]
    DAS A N, SIT N D. Modification of taro starch and starch nanoparticles by various physical methods and their characterization[J]. Starch-Stärke,2021,73(5-6):2000227.
    [9]
    孙亚东, 陈启凤, 吕闪闪, 等. 淀粉改性的研究进展[J]. 材料导报,2016(21):68−74. [SUN Y D, CHEN Q F, LU S S, et al. Recent progress in modification of starch[J]. Materials Review,2016(21):68−74.
    [10]
    VAMADEVAN V, BERTOFT E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules[J]. Food Hydrocolloids,2020,103:105663. doi: 10.1016/j.foodhyd.2020.105663
    [11]
    徐忠, 周美琴, 吴艳华, 等. 复合变性对淀粉性质的影响研究[J]. 食品工业科技,2008(1):282−285. [XU Z, ZHOU M Q, WU Y H, et al. Study on effect of combination modified on starch[J]. Science and Technology of Food Industry,2008(1):282−285.
    [12]
    陈海明. 超声对玉米淀粉聚集态结构的影响及其辅助化学改性研究[D]. 广州: 华南理工大学, 2012.

    CHEN H M. The influence of ultrasonic on aggregation state structure of corn starch and assist of chemical modification[D]. Guangzhou: South China University of Technology, 2012.
    [13]
    FALSAFI S R, MAGHSOUDLOU Y, ROSTAMABADI H, et al. Preparation of physically modified oat starch with different sonication treatments[J]. Food Hydrocolloids,2019,89(1):311−320.
    [14]
    MONROY Y, RIVERO S, MA G. Microstructural and techno-functional properties of cassava starch modified by ultrasound[J]. Ultrasonics Sonochemistry,2018,42(1):795−804.
    [15]
    沈壮志, 林书玉. 声场中水力空化泡的动力学特性[J]. 物理学报,2011,60(8):385−394. [SHEN Z Z, LIN S Y. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field[J]. Acta Physica Sinica,2011,60(8):385−394.
    [16]
    沈壮志, 柳楠. 文丘里管反应器空化泡的动力学特性[J]. 陕西师范大学学报(自科版),2012,40(1):23−28. [SHEN Z Z, LIU N. Bubble dynamical behaviors in the venturicavitation reactor[J]. Journal of Shaanxi Normal University (Natural Science Edition),2012,40(1):23−28.
    [17]
    KADIVAR E, TIMOSHEVSKIY M V, NICHIK M Y, et al. Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems[J]. Physics of Fluids,2020,32(5):1−19.
    [18]
    SUSLICK K S, EDDINGSAAS N C, FLANNIGAN D J, et al. Extreme conditions during multibubble cavitation: Sonolumi-nescence as a spectroscopic probe[J]. Ultrasonics Sonochemistry,2011,18(4):842−846. doi: 10.1016/j.ultsonch.2010.12.012
    [19]
    ASAITHAMBI N, SINGHA P, DWIVEDI M, et al. Hydrodynamic cavitation and its application in food and beverage industry: A review[J]. Journal of Food Process Engineering,2019,42(5):e13144.
    [20]
    王宏伟, 丁江涛, 张艳艳, 等. 湿热处理对薏米淀粉聚集态结构及糊化特性的影响[J]. 食品科学,2020,41(17):111−117. [WANG H W, DING J T, ZHANG Y Y, et al. Impact of heat moisture treatment on the aggregation structure and pasting behavior of adlay starch[J]. Food Science,2020,41(17):111−117.
    [21]
    王宏伟, 肖乃勇, 马颖. 超声处理时间对小麦淀粉聚集态结构及理化性能的影响[J]. 轻工学报,2019,34(5):10−19. [WANG H W, XIAO N Y, MA Y. Effect of ultrasonic treatment time on aggregation structure and physicochemical properties of wheat starch[J]. Journal of Light Industry,2019,34(5):10−19.
    [22]
    WANG H W, XU K, MA Y, et al. Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch[J]. Ultrasonics Sonochemistry,2020,63:104868. doi: 10.1016/j.ultsonch.2019.104868
    [23]
    张健东, 孙三祥, 乔慧琼. 水力空化技术的研究及其应用[J]. 环境科学与管理,2007(5):65−69. [ZHANG J D, SUN S X, QIAO H Q. The application and study of hydrodynamic cavitation[J]. Environmental Science and Management,2007(5):65−69.
    [24]
    扶雄, 黄强. 食用变性淀粉[M]. 北京: 中国轻工业出版社, 2016.

    FU X, HUANG Q. Modified starch in food[M]. Beijing: China Light Industry Press, 2016.
    [25]
    胡爱军, 李倩, 郑捷, 等. 双频超声对红薯淀粉结构和性质的影响[J]. 高校化学工程学报,2014,28(2):370−375. [HU A J, LI Q, ZHENG J, et al. Effects of dual-frequency ultrasound on structure and properties of sweet potato starch[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(2):370−375.
    [26]
    陈翠兰, 张本山, 陈福泉. 淀粉结晶度计算的新方法[J]. 食品科学,2011,32(9):68−71. [CHEN C L, ZHANG B S, CHEN F Q. A novel method for calculating starch crystallinity[J]. Food Science,2011,32(9):68−71.
    [27]
    徐斌, 满建民, 韦存虚. 粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨[J]. 植物学报,2012,47(3):278−285. [XU B, MAN J M, WEI C X. Methods for determining relative crystallinity of plant starch X-ray powder diffraction spectra[J]. Chinese Bulletin of Botany,2012,47(3):278−285.
    [28]
    杨景峰, 罗志刚, 罗发兴. 淀粉晶体结构研究进展[J]. 食品工业科技,2007(7):240−243. [YANG J F, LUO Z G, LUO F X. Research progress on crystal structure of starch[J]. Science and Technology of Food Industry,2007(7):240−243.
    [29]
    PAMELA C, FLORES S, CESAR A, et al. In vitro digestibility of ultrasound-treated corn starch[J]. Starch-tä rke,2017,69(9-10):1700040.
    [30]
    SEVENOU O, HILL S E, FARHAT I A, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2002,31(1-3):79−85. doi: 10.1016/S0141-8130(02)00067-3
    [31]
    DING Y B, XIAO Y W, OUYANG Q F, et al. Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment[J]. Ultrasonics Sonochemistry,2021,70:105350. doi: 10.1016/j.ultsonch.2020.105350
    [32]
    贾淑玉, 张百汝, 李杰, 等. 湿热处理对山药粉理化及结构性质的影响[J]. 食品工业科技,2021,42(7):22−26. [JIA S Y, ZHANG B R, LI J, et al. Effect of heat moisture treatment on physicochemical and structural properties of yam flour[J]. Science and Technology of Food Industry,2021,42(7):22−26.
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 姜秀杰,张家瑜,李莹,迟晓星,孙东波,曹冬梅,张东杰. 富含γ-氨基丁酸的萌发红小豆对T2DM小鼠肠道菌群的影响. 食品工业科技. 2024(12): 151-159 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (212) PDF downloads (26) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return