Citation: | PEI Wenwen, ZENG Yan, LIU Juanjuan, et al. Expression of Recombinant β-Glucosidase in Bacillus subtilis and Its Enzymatic Characterization and Application in Preparation of Icariside II[J]. Science and Technology of Food Industry, 2022, 43(6): 133−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080167. |
[1] |
张媛媛, 苏敏, 朴春红, 等. 微生物来源的β-葡萄糖苷酶在食品工业中应用进展[J]. 食品工业科技,2019,40(16):329−335. [ZHANG Y Y, SU M, PIAO C H, et al. Progress on the β-glucosidase from microorganisms and its applications in food industry[J]. Science and Technology of Food Industry,2019,40(16):329−335.
|
[2] |
AHMED A, BATOOL K, BIBI A. Microbial β-glucosidase: sources, production and applications[J]. Journal of Applied & Environmental Microbiology,2017,5(1):31−46.
|
[3] |
SRIVASTAVA N, RATHOUR R, JHA S, et al. Microbial beta glucosidase enzymes: recent advances in biomass conversation for biofuels application[J]. Biomolecules,2019,9(6):220. doi: 10.3390/biom9060220
|
[4] |
LI Y, Hu X, SANG J, et al. An acid-stable β-glucosidase from Aspergillus aculeatus: gene expression, biochemical characterization and molecular dynamics simulation[J]. International Journal of Biological Macromolecules,2018,119:462−469. doi: 10.1016/j.ijbiomac.2018.07.165
|
[5] |
ZADA N S, BELDUZ A O, GÜLER H I, et al. Cloning, expression, biochemical characterization, and molecular docking studies of a novel glucose tolerant β-glucosidase from Saccharomonospora sp. NB11[J]. Enzyme and Microbial Technology,2021,148:109799. doi: 10.1016/j.enzmictec.2021.109799
|
[6] |
SHI X, XIE J, LIAO S, et al. High-level expression of recombinant thermostable β-glucosidase in Escherichia coli by regulating acetic acid[J]. Bioresource Technology,2017,241:795−801. doi: 10.1016/j.biortech.2017.05.105
|
[7] |
康倩, 向梦洁, 张大伟. 枯草芽孢杆菌在系统与合成生物技术中研究进展及工业应用[J]. 生物工程学报,2021,37(3):923−938. [KANG Q, XIANG M J, ZHANG D W. Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology[J]. Chinese Journal of Biotechnology,2021,37(3):923−938.
|
[8] |
ZHANG K, SU L, WU J. Recent advances in recombinant protein production by Bacillus subtilis[J]. Annual Review of Food Science and Technology,2020,11:295−318. doi: 10.1146/annurev-food-032519-051750
|
[9] |
VAVROVÁ L, MUCHOVÁ K, BARÁK I. Comparison of different Bacillus subtilis expression systems[J]. Research in Microbiology,2010,161(9):791−797. doi: 10.1016/j.resmic.2010.09.004
|
[10] |
张华峰, 杨晓华. 淫羊藿在食品工业中的应用现状与展望[J]. 食品工业科技, 2010, 31(5): 390−393
ZHANG H F, YANG X H. Application of Herba Epimedii in food industry: Current status and prospect [J] Science and Technology of Food Industry, 2010, 31(5): 390−393.
|
[11] |
李子豪, 柯仲成, 封亮, 等. 宝藿苷Ⅰ的制备方法及药理作用研究进展[J]. 中国中药杂志,2018,43(17):3444−3450. [LI Z H, KE Z C, FENG L, et al. Preparation method and pharmacological effect of baohuosideⅠ[J]. China Journal of Chinese Materia Medica,2018,43(17):3444−3450.
|
[12] |
XIAO H H, ZHANG M B, XU J T, et al. Icariside II promotes proliferation and neuronal differentiation of neural stem cells via activating Wnt/β-catenin signaling pathway[J]. Phytotherapy Research,2021,35(5):2773−2784. doi: 10.1002/ptr.7022
|
[13] |
XI Y, JIANG T, YU J, et al. Preliminary studies on the anti-osteoporosis activity of baohuoside I[J]. Biomedicine & Pharmacotherapy,2019,115:108850.
|
[14] |
ZHOU J, DENG Y, LI F, et al. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats[J]. Biomedicine & Pharmacotherapy,2019,111:315−324.
|
[15] |
MUHAMMAD K, AMARA M, IQBAL Q J, et al. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells[J]. International Journal of Biological Sciences,2015,11(9):1100−1112. doi: 10.7150/ijbs.11595
|
[16] |
翟远坤, 葛宝丰, 陈克明, 等. 淫羊藿苷与其代谢产物淫羊藿次苷Ⅱ对骨髓间充质干细胞成骨性分化影响的比较研究[J]. 中药材,2010,33(12):1896−1900. [ZHAI Y K, GE B F, CHEN K M, et al. Comparative study on the osteogenic differentiation of rat bone marrow stromal cells effected by icariin and icariside II[J]. Journal of Chinese Medicinal Materials,2010,33(12):1896−1900.
|
[17] |
彭静, 马益华, 陈彦, 等. 固定化β-葡萄糖苷酶和蜗牛酶生物转化淫羊藿苷效率的比较研究[J]. 药学学报, 2015, 50(12): 1652-1659.
PENG J, MA Y H, CHEN Y, et al. Transformation of icariin by immobilized β-glucosidase and snailase [J]. Acta Pharmaceutica Sinica 2015, 50 (12): 1652−1659.
|
[18] |
贾东升, 贾晓斌, 赵江丽, 等. 纤维素酶转化淫羊藿苷制备宝藿苷Ⅰ的研究[J]. 中草药,2010,41(6):888−892. [JIA D S, JIA X B, ZHAO J L, et al. Preparation of baohuoside I by enzymolysis of icariin with cellulose[J]. Chinese Traditional and Herbal Drugs,2010,41(6):888−892.
|
[19] |
宋川霞, 陈红梅, 戴宇, 等. Plackett-Burman试验设计联用星点设计-效应面法优化纤维素酶水解淫羊藿苷为宝藿苷Ⅰ的工艺 [J]. 中药材, 2014, 37(11): 2082−2086.
SONG Q X, CHEN H M, DAI Y, et al. Optimization of process of icraiin be hydrolyzed to BaohuosideⅠby cellulase based on Plackett-Burman design combined with CCD response surface methodology [J] Journal of Chinese Medicinal Materials, 2014, 37(11): 2082−2086.
|
[20] |
张振海, 陈玲玲, 贾晓斌, 等. β-葡萄糖苷酶酶解淫羊藿苷制备宝藿苷Ⅰ的工艺研究[J]. 中国药房,2011,22(43):4059−4061. [ZHANG Z H, CHEN L L, JIA X B, et al. Preparation technology of baohuoside I by enzymolysis of icariin with β-glucosidase[J]. China Pharmacy,2011,22(43):4059−4061.
|
[21] |
CHENG T, YANG J, ZHANG T, et al. Optimized biotransformation of Icariin into Icariside II by β-glucosidase from Trichoderma viride using central composite design method[J]. Bio Med Research International,2016:5936947.
|
[22] |
QUAN X, XU D, HUANG Z, et al. Preparation of icariside II from icariin by enzymatic hydrolysis method[J]. Fitoterapia,2010,81(5):437−442. doi: 10.1016/j.fitote.2009.12.006
|
[23] |
SHEN Y, WANG H, LU Y, et al. Construction of a novel catalysis system for clean and efficient preparation of baohuoside I from icariin based on biphase enzymatic hydrolysis[J]. Journal of Cleaner Production,2018,170:727−734. doi: 10.1016/j.jclepro.2017.09.192
|
[24] |
XIE J, XU H, JIANG J, et al. Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total epimedium flavonoids[J]. Bioorganic Chemistry,2020,104:104296. doi: 10.1016/j.bioorg.2020.104296
|
[25] |
COTA J, CORRÊA T L R, DAMÁSIO A R L, et al. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential[J]. New Biotechnology,2015,32(1):13−20. doi: 10.1016/j.nbt.2014.07.009
|
[26] |
XIE J, ZHAO D, ZHAO L, et al. Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity[J]. Journal of Industrial Microbiology & Biotechnology,2015,42(6):839−850.
|
[27] |
李石平, 温建辉, 赵祎武, 等. 利用一种耐热耐糖β-葡萄糖苷酶制备黄芩素的研究[J]. 中国中药杂志,2015,40(23):4616−4622. [LI S P, WEN J H, ZHAO W W, et al. Preparation of baicalein using thermophilic and sugar-tolerant β-glucosidase[J]. China Journal of Chinese Materia Medica,2015,40(23):4616−4622.
|
[28] |
陶大炜, 宁喜斌. 产 α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145−151.
TAO D, NING X. Screening, identification and enzymatic properties of α-cyclodextrin glycosyltransferase producing strains [J]. Food and Fermentation Industries, 2021, 47(6): 145−151.
|
[29] |
于雪娥, 秦建平, 李家春, 等. 一测多评法同时测定淫羊藿总黄酮胶囊中7种黄酮类成分[J]. 中国实验方剂学杂志,2017,23(7):79−85. [YU X E, QIN J P, LI J C, et al. Simultaneous determination of 7 flavonoid compounds in yinyanghuo zonghuangtong capsule by quantitative analysis of multi-components with a single-marker[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(7):79−85.
|
[30] |
陈静, 郝伟伟, 王春梅, 等. 产β-葡萄糖苷酶真菌的筛选鉴定、纯化及酶学性质分析[J]. 食品科学,2013,34(5):191−196. [CHEN J, HAO W W, WANG C M, et al. Screening and identification of β-glucosidase-producing fungi, and purification and enzymatic analysis[J]. Food Science,2013,34(5):191−196.
|
[31] |
余奕宏, 顾苑婷, 丁筑红, 等. β-葡萄糖苷酶生物转化刺梨槲皮素糖苷的工艺优化[J]. 食品科学技术学报,2020,38(5):109−118. [YU Y H, GU Y T, DING Z H, et al. Optimization on biotransformation of quercetin glycosides in Rosa roxburghii by β- glucosidase[J]. Journal of Food Science and Technology,2020,38(5):109−118. doi: 10.3969/j.issn.2095-6002.2020.05.014
|
[32] |
郭天赐, 赵石磊, 刘石生. 苦杏仁β-葡萄糖苷酶水解豆浆中大豆异黄酮的工艺研究[J]. 食品研究与开发,2019,40(12):82−88. [GUO T C, ZHAO S L, LIU S S. Study on the hydrolyzation of soybean isoflavone aglycones in soymilk by bitter almond β-glucosidase[J]. Food Research and Development,2019,40(12):82−88. doi: 10.3969/j.issn.1005-6521.2019.12.014
|
[33] |
何成, 吴言, 孟春雨, 等. 新型β-葡萄糖苷酶 BglD2异源表达及水解虎杖苷能力[J]. 生物工程学报,2021,37(2):580−592. [HE C, WU Y, MENG CY, et al. Heterologous expression of a novel β-glucosidase BglD2 and its application in polydatin-hydrolyzing[J]. Chinese Journal of Biotechnology,2021,37(2):580−592.
|
1. |
李宣达. 亚临界水制备杏仁抗氧化肽的工艺优化及其抗疲劳活性研究. 食品科技. 2025(02): 217-227 .
![]() | |
2. |
马科,程源航,苏泽宇. 灵菊七蛋白提取及其降糖活性研究. 云南民族大学学报(自然科学版). 2024(01): 23-30 .
![]() | |
3. |
李巧. 食用菌多糖提取及应用研究进展. 食品安全导刊. 2024(02): 173-175 .
![]() | |
4. |
李晓强,胡坤,龚玉石,胡勇,王颖,郭娟. 不同产地、不同提取方法对余甘子多酚含量及抗氧化活性的影响. 食品工业科技. 2023(02): 317-323 .
![]() | |
5. |
何安乐,熊瑶,刘庚贵,曾润清. 罗汉果甜苷V亚临界水纯化工艺及抗氧化活性研究. 中国食品添加剂. 2023(02): 85-92 .
![]() | |
6. |
王娜,邹恺平,刘顺,刘炜. 索尼娅石斛多糖亚临界水提取工艺优化研究. 中国药业. 2023(11): 54-57 .
![]() | |
7. |
闫林林,王艳辉,张佳婵,郑光耀. 紫苏籽粕迷迭香酸的亚临界水提取工艺优化及其抗氧化活性. 食品工业科技. 2023(17): 176-185 .
![]() |