PEI Wenwen, ZENG Yan, LIU Juanjuan, et al. Expression of Recombinant β-Glucosidase in Bacillus subtilis and Its Enzymatic Characterization and Application in Preparation of Icariside II[J]. Science and Technology of Food Industry, 2022, 43(6): 133−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080167.
Citation: PEI Wenwen, ZENG Yan, LIU Juanjuan, et al. Expression of Recombinant β-Glucosidase in Bacillus subtilis and Its Enzymatic Characterization and Application in Preparation of Icariside II[J]. Science and Technology of Food Industry, 2022, 43(6): 133−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080167.

Expression of Recombinant β-Glucosidase in Bacillus subtilis and Its Enzymatic Characterization and Application in Preparation of Icariside II

More Information
  • Received Date: August 16, 2021
  • Available Online: January 12, 2022
  • To obtain a safe and efficient β-glucosidase for preparing icariside II from icariin by biocatalytic hydrolysis, a GRAS (generally recognized as safe) strain Bacillus subtilis WB600 was used as the host to produce a thermophilic β-glucosidase from Thermotoga petrophila, by construction of a Escherichia coli-Bacillus subtilis shuttle vector pMA5. Enzymatic properties of the recombinant enzyme and its process conditions of hydrolyzing icariin to prepare icariside II were studied. The result showed that after cultivated in SR culture for 48 h at 30 ℃, the activity of β-glucosidase in the fermented broth reached to 69.68 U/mL. TpBgl3 exhibited the maximal activity at 85 °C and pH4.0. More than 85% of the maximum activity was retained after incubation at 65 °C and pH4.0 for 3 h. Under optimized conditions of 65 °C, pH4.0, and 0.16 U/mg enzyme dosage, the recombinant enzyme could transform 10 g/L icariin into 7.50 g/L icariside II in 20 min with a molar conversion of 98.67%. The successful secretory expression of β-glucosidase in Bacillus subtilis could provide new ways to the industrial safe and efficient biopreparation of icariside II and other high-value-added aglycon compounds.
  • [1]
    张媛媛, 苏敏, 朴春红, 等. 微生物来源的β-葡萄糖苷酶在食品工业中应用进展[J]. 食品工业科技,2019,40(16):329−335. [ZHANG Y Y, SU M, PIAO C H, et al. Progress on the β-glucosidase from microorganisms and its applications in food industry[J]. Science and Technology of Food Industry,2019,40(16):329−335.
    [2]
    AHMED A, BATOOL K, BIBI A. Microbial β-glucosidase: sources, production and applications[J]. Journal of Applied & Environmental Microbiology,2017,5(1):31−46.
    [3]
    SRIVASTAVA N, RATHOUR R, JHA S, et al. Microbial beta glucosidase enzymes: recent advances in biomass conversation for biofuels application[J]. Biomolecules,2019,9(6):220. doi: 10.3390/biom9060220
    [4]
    LI Y, Hu X, SANG J, et al. An acid-stable β-glucosidase from Aspergillus aculeatus: gene expression, biochemical characterization and molecular dynamics simulation[J]. International Journal of Biological Macromolecules,2018,119:462−469. doi: 10.1016/j.ijbiomac.2018.07.165
    [5]
    ZADA N S, BELDUZ A O, GÜLER H I, et al. Cloning, expression, biochemical characterization, and molecular docking studies of a novel glucose tolerant β-glucosidase from Saccharomonospora sp. NB11[J]. Enzyme and Microbial Technology,2021,148:109799. doi: 10.1016/j.enzmictec.2021.109799
    [6]
    SHI X, XIE J, LIAO S, et al. High-level expression of recombinant thermostable β-glucosidase in Escherichia coli by regulating acetic acid[J]. Bioresource Technology,2017,241:795−801. doi: 10.1016/j.biortech.2017.05.105
    [7]
    康倩, 向梦洁, 张大伟. 枯草芽孢杆菌在系统与合成生物技术中研究进展及工业应用[J]. 生物工程学报,2021,37(3):923−938. [KANG Q, XIANG M J, ZHANG D W. Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology[J]. Chinese Journal of Biotechnology,2021,37(3):923−938.
    [8]
    ZHANG K, SU L, WU J. Recent advances in recombinant protein production by Bacillus subtilis[J]. Annual Review of Food Science and Technology,2020,11:295−318. doi: 10.1146/annurev-food-032519-051750
    [9]
    VAVROVÁ L, MUCHOVÁ K, BARÁK I. Comparison of different Bacillus subtilis expression systems[J]. Research in Microbiology,2010,161(9):791−797. doi: 10.1016/j.resmic.2010.09.004
    [10]
    张华峰, 杨晓华. 淫羊藿在食品工业中的应用现状与展望[J]. 食品工业科技, 2010, 31(5): 390−393

    ZHANG H F, YANG X H. Application of Herba Epimedii in food industry: Current status and prospect [J] Science and Technology of Food Industry, 2010, 31(5): 390−393.
    [11]
    李子豪, 柯仲成, 封亮, 等. 宝藿苷Ⅰ的制备方法及药理作用研究进展[J]. 中国中药杂志,2018,43(17):3444−3450. [LI Z H, KE Z C, FENG L, et al. Preparation method and pharmacological effect of baohuosideⅠ[J]. China Journal of Chinese Materia Medica,2018,43(17):3444−3450.
    [12]
    XIAO H H, ZHANG M B, XU J T, et al. Icariside II promotes proliferation and neuronal differentiation of neural stem cells via activating Wnt/β-catenin signaling pathway[J]. Phytotherapy Research,2021,35(5):2773−2784. doi: 10.1002/ptr.7022
    [13]
    XI Y, JIANG T, YU J, et al. Preliminary studies on the anti-osteoporosis activity of baohuoside I[J]. Biomedicine & Pharmacotherapy,2019,115:108850.
    [14]
    ZHOU J, DENG Y, LI F, et al. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats[J]. Biomedicine & Pharmacotherapy,2019,111:315−324.
    [15]
    MUHAMMAD K, AMARA M, IQBAL Q J, et al. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells[J]. International Journal of Biological Sciences,2015,11(9):1100−1112. doi: 10.7150/ijbs.11595
    [16]
    翟远坤, 葛宝丰, 陈克明, 等. 淫羊藿苷与其代谢产物淫羊藿次苷Ⅱ对骨髓间充质干细胞成骨性分化影响的比较研究[J]. 中药材,2010,33(12):1896−1900. [ZHAI Y K, GE B F, CHEN K M, et al. Comparative study on the osteogenic differentiation of rat bone marrow stromal cells effected by icariin and icariside II[J]. Journal of Chinese Medicinal Materials,2010,33(12):1896−1900.
    [17]
    彭静, 马益华, 陈彦, 等. 固定化β-葡萄糖苷酶和蜗牛酶生物转化淫羊藿苷效率的比较研究[J]. 药学学报, 2015, 50(12): 1652-1659.

    PENG J, MA Y H, CHEN Y, et al. Transformation of icariin by immobilized β-glucosidase and snailase [J]. Acta Pharmaceutica Sinica 2015, 50 (12): 1652−1659.
    [18]
    贾东升, 贾晓斌, 赵江丽, 等. 纤维素酶转化淫羊藿苷制备宝藿苷Ⅰ的研究[J]. 中草药,2010,41(6):888−892. [JIA D S, JIA X B, ZHAO J L, et al. Preparation of baohuoside I by enzymolysis of icariin with cellulose[J]. Chinese Traditional and Herbal Drugs,2010,41(6):888−892.
    [19]
    宋川霞, 陈红梅, 戴宇, 等. Plackett-Burman试验设计联用星点设计-效应面法优化纤维素酶水解淫羊藿苷为宝藿苷Ⅰ的工艺 [J]. 中药材, 2014, 37(11): 2082−2086.

    SONG Q X, CHEN H M, DAI Y, et al. Optimization of process of icraiin be hydrolyzed to BaohuosideⅠby cellulase based on Plackett-Burman design combined with CCD response surface methodology [J] Journal of Chinese Medicinal Materials, 2014, 37(11): 2082−2086.
    [20]
    张振海, 陈玲玲, 贾晓斌, 等. β-葡萄糖苷酶酶解淫羊藿苷制备宝藿苷Ⅰ的工艺研究[J]. 中国药房,2011,22(43):4059−4061. [ZHANG Z H, CHEN L L, JIA X B, et al. Preparation technology of baohuoside I by enzymolysis of icariin with β-glucosidase[J]. China Pharmacy,2011,22(43):4059−4061.
    [21]
    CHENG T, YANG J, ZHANG T, et al. Optimized biotransformation of Icariin into Icariside II by β-glucosidase from Trichoderma viride using central composite design method[J]. Bio Med Research International,2016:5936947.
    [22]
    QUAN X, XU D, HUANG Z, et al. Preparation of icariside II from icariin by enzymatic hydrolysis method[J]. Fitoterapia,2010,81(5):437−442. doi: 10.1016/j.fitote.2009.12.006
    [23]
    SHEN Y, WANG H, LU Y, et al. Construction of a novel catalysis system for clean and efficient preparation of baohuoside I from icariin based on biphase enzymatic hydrolysis[J]. Journal of Cleaner Production,2018,170:727−734. doi: 10.1016/j.jclepro.2017.09.192
    [24]
    XIE J, XU H, JIANG J, et al. Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total epimedium flavonoids[J]. Bioorganic Chemistry,2020,104:104296. doi: 10.1016/j.bioorg.2020.104296
    [25]
    COTA J, CORRÊA T L R, DAMÁSIO A R L, et al. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential[J]. New Biotechnology,2015,32(1):13−20. doi: 10.1016/j.nbt.2014.07.009
    [26]
    XIE J, ZHAO D, ZHAO L, et al. Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity[J]. Journal of Industrial Microbiology & Biotechnology,2015,42(6):839−850.
    [27]
    李石平, 温建辉, 赵祎武, 等. 利用一种耐热耐糖β-葡萄糖苷酶制备黄芩素的研究[J]. 中国中药杂志,2015,40(23):4616−4622. [LI S P, WEN J H, ZHAO W W, et al. Preparation of baicalein using thermophilic and sugar-tolerant β-glucosidase[J]. China Journal of Chinese Materia Medica,2015,40(23):4616−4622.
    [28]
    陶大炜, 宁喜斌. 产 α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145−151.

    TAO D, NING X. Screening, identification and enzymatic properties of α-cyclodextrin glycosyltransferase producing strains [J]. Food and Fermentation Industries, 2021, 47(6): 145−151.
    [29]
    于雪娥, 秦建平, 李家春, 等. 一测多评法同时测定淫羊藿总黄酮胶囊中7种黄酮类成分[J]. 中国实验方剂学杂志,2017,23(7):79−85. [YU X E, QIN J P, LI J C, et al. Simultaneous determination of 7 flavonoid compounds in yinyanghuo zonghuangtong capsule by quantitative analysis of multi-components with a single-marker[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(7):79−85.
    [30]
    陈静, 郝伟伟, 王春梅, 等. 产β-葡萄糖苷酶真菌的筛选鉴定、纯化及酶学性质分析[J]. 食品科学,2013,34(5):191−196. [CHEN J, HAO W W, WANG C M, et al. Screening and identification of β-glucosidase-producing fungi, and purification and enzymatic analysis[J]. Food Science,2013,34(5):191−196.
    [31]
    余奕宏, 顾苑婷, 丁筑红, 等. β-葡萄糖苷酶生物转化刺梨槲皮素糖苷的工艺优化[J]. 食品科学技术学报,2020,38(5):109−118. [YU Y H, GU Y T, DING Z H, et al. Optimization on biotransformation of quercetin glycosides in Rosa roxburghii by β- glucosidase[J]. Journal of Food Science and Technology,2020,38(5):109−118. doi: 10.3969/j.issn.2095-6002.2020.05.014
    [32]
    郭天赐, 赵石磊, 刘石生. 苦杏仁β-葡萄糖苷酶水解豆浆中大豆异黄酮的工艺研究[J]. 食品研究与开发,2019,40(12):82−88. [GUO T C, ZHAO S L, LIU S S. Study on the hydrolyzation of soybean isoflavone aglycones in soymilk by bitter almond β-glucosidase[J]. Food Research and Development,2019,40(12):82−88. doi: 10.3969/j.issn.1005-6521.2019.12.014
    [33]
    何成, 吴言, 孟春雨, 等. 新型β-葡萄糖苷酶 BglD2异源表达及水解虎杖苷能力[J]. 生物工程学报,2021,37(2):580−592. [HE C, WU Y, MENG CY, et al. Heterologous expression of a novel β-glucosidase BglD2 and its application in polydatin-hydrolyzing[J]. Chinese Journal of Biotechnology,2021,37(2):580−592.
  • Cited by

    Periodical cited type(7)

    1. 李宣达. 亚临界水制备杏仁抗氧化肽的工艺优化及其抗疲劳活性研究. 食品科技. 2025(02): 217-227 .
    2. 马科,程源航,苏泽宇. 灵菊七蛋白提取及其降糖活性研究. 云南民族大学学报(自然科学版). 2024(01): 23-30 .
    3. 李巧. 食用菌多糖提取及应用研究进展. 食品安全导刊. 2024(02): 173-175 .
    4. 李晓强,胡坤,龚玉石,胡勇,王颖,郭娟. 不同产地、不同提取方法对余甘子多酚含量及抗氧化活性的影响. 食品工业科技. 2023(02): 317-323 . 本站查看
    5. 何安乐,熊瑶,刘庚贵,曾润清. 罗汉果甜苷V亚临界水纯化工艺及抗氧化活性研究. 中国食品添加剂. 2023(02): 85-92 .
    6. 王娜,邹恺平,刘顺,刘炜. 索尼娅石斛多糖亚临界水提取工艺优化研究. 中国药业. 2023(11): 54-57 .
    7. 闫林林,王艳辉,张佳婵,郑光耀. 紫苏籽粕迷迭香酸的亚临界水提取工艺优化及其抗氧化活性. 食品工业科技. 2023(17): 176-185 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (306) PDF downloads (40) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return