Citation: | LI Xueqing, PANG Xin, GAO Huifang, et al. Bioinformatics Analysis of Extracellular Keratinase KerQH2 from Rheinheimera sp.QH[J]. Science and Technology of Food Industry, 2022, 43(9): 125−130. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080111. |
[1] |
YU J L, YU D W, CHECKLA D M, et al. Human hair keratins[J]. Journal of Investigative Dermatology,1993,101(1):56S−59S. doi: 10.1016/0022-202X(93)90501-8
|
[2] |
EHRLICH F, LACHNER J, HERMANN M, et al. Convergent evolution of cysteine-rich keratins in hard skin appendages of terrestrial vertebrates[J]. Molecular Biology and Evolution,2020,37(4):982−993. doi: 10.1093/molbev/msz279
|
[3] |
LI Q X. Progress in microbial degradation of feather waste[J]. Frontiers in Microbiology,2019,10:2717. doi: 10.3389/fmicb.2019.02717
|
[4] |
VIDMAR B, VODOVNIK M. Microbial keratinases: Enzymes with promising biotechnological applications[J]. Food Technology & Biotechnology,2018,56(3):312−328.
|
[5] |
GHAFFAR I, IMTIAZ A, HUSSAIN A, et al. Microbial production and industrial applications of keratinases: An overview[J]. International Microbiology,2018,21(4):163−174. doi: 10.1007/s10123-018-0022-1
|
[6] |
VERMA A, SINGH H, ANWAR S, et al. Microbial keratinases: Industrial enzymes with waste management potential[J]. Critical Reviews in Biotechnology,2017,37(4):476−491. doi: 10.1080/07388551.2016.1185388
|
[7] |
ABDEL-NABY M A, EL-REFAI H A, IBRAHIM M H A. Structural characterization, catalytic, kinetic and thermodynamic properties of keratinase from Bacillus pumilus FH9[J]. International Journal of Biological Macromolecules, 2017, 105(Pt 1): 973-980.
|
[8] |
CHOIŃSKA-PULIT A, ŁABA W, RODZIEWICZ A. Enhancement of pig bristles waste bioconversion by inoculum of keratinolytic bacteria during composting[J]. Waste Management,2019,84:269−276. doi: 10.1016/j.wasman.2018.11.052
|
[9] |
LI Z W, LIANG S, KE Y, et al. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3[J]. Communications Biology,2020,3(1):191−203. doi: 10.1038/s42003-020-0918-0
|
[10] |
SHARMA I, KANGO N. Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization[J]. International Journal of Biological Macromolecules,2021,166:1046−1056. doi: 10.1016/j.ijbiomac.2020.10.260
|
[11] |
SHAVANDI A, SILVA T H, BEKHIT A A, et al. Keratin: Dissolution, extraction and biomedical application[J]. Biomaterials Science,2017,5(9):1699−1735. doi: 10.1039/C7BM00411G
|
[12] |
NNOLIM N E, UDENIGWE C C, OKOH A I, et al. Microbial keratinase: Next generation green catalyst and prospective applications[J]. Frontiers in Microbiology,2020,11:580164. doi: 10.3389/fmicb.2020.580164
|
[13] |
UTOMO B, DJALALROSYIDI L E R, PUSPANINGSIH N N T, et al. Cleaning method by keratinase enzyme for improving quality edible bird nest[J]. Journal of Life Science and Biomedicine,2014,4(5):416−420.
|
[14] |
ODETALLAH N H, WANG J J, GARLICH J D, et al. Keratinase in starter diets improves growth of broiler chicks[J]. Poultry Science,2003,82(4):664−670. doi: 10.1093/ps/82.4.664
|
[15] |
BRANDELLI A, DAROIT D J, RIFFEL A. Biochemical features of microbial keratinases and their production and applications[J]. Applied Microbiology and Biotechnology,2010,85(6):1735−1750. doi: 10.1007/s00253-009-2398-5
|
[16] |
VASILEVA-TONKOVA E, GOUSTEROVA A, NESHEV G. Ecologically safe method for improved feather wastes biodegradation[J]. International Biodeterioration & Biodegradation,2009,63(8):1008−1012.
|
[17] |
李雷, 冯红. 两株芽孢杆菌降解羽毛比较及抗氧化肽分离[J]. 应用与环境生物学报,2018,24(1):172−176. [LI L, FENG H. Comparison of feather degradation by two Bacillus strains and separation of antioxidant peptides[J]. Chinese Journal of Applied and Environmental Biology,2018,24(1):172−176.
|
[18] |
LANGE L, HUANG Y, BUSK P K. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance[J]. Applied Microbiology and Biotechnology,2016,100(5):2083−2096. doi: 10.1007/s00253-015-7262-1
|
[19] |
ZHANG C, KIM S K. Research and application of marine microbial enzymes: Status and prospects[J]. Marine Drugs,2010,8(6):1920−1934. doi: 10.3390/md8061920
|
[20] |
BONUGLI-SANTOS R C, DOS SANTOS VASCONCELOS M R, PASSARINI M R, et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications[J]. Frontiers in Microbiology,2015,6:269−283.
|
[21] |
JAMIR K, SESHAGIRIRAO K. Fluorescence quenching, structural and unfolding studies of a purified cysteine protease, ZCPG from Zingiber montanum rhizome[J]. International Journal of Biological Macromolecules,2018,106:277−283. doi: 10.1016/j.ijbiomac.2017.08.019
|
[22] |
武翠玲, 宋英达, 高慧芳, 等. Salinivibrio sp.YH4胞外丝氨酸蛋白酶EYHS耐盐性及生物信息学分析[J]. 盐湖研究,2021,29(1):105−110. [WU C L, SONG Y D, GAO H F, et al. Salt-tolerance and bioinformatics analysis on the serine protease EYHS secreted by Salinivibrio sp. YH4[J]. Journal of Salt Lake Research,2021,29(1):105−110.
|
[23] |
AHMAD S, KUMAR V, RAMANAND K B, et al. Probing protein stability and proteolytic resistance by loop scanning: A comprehensive mutational analysis[J]. Protein Science,2012,21(3):433−446. doi: 10.1002/pro.2029
|
[24] |
EMAMEH R Z, KAZOKAITĖ J, YAKHCHALI B. Bioinformatics analysis of extracellular subtilisin E from Bacillus subtilis[J]. Journal of Biomolecular Structure and Dynamics,2021,4:1−8.
|
[25] |
蒋少龙, 蔡俊. 角蛋白酶及其应用研究进展[J]. 食品工业科技,2019,40(6):348−354, 360. [JIANG S L, CAI J. Research progress of keratinase and its application[J]. Science and Technology of Food Industry,2019,40(6):348−354, 360.
|
[26] |
HE H L, GUO J, CHEN X L, et al. Structural and functional characterization of mature forms of metalloprotease E495 from Arctic sea-ice bacterium Pseudoalteromonas sp. SM495[J]. PLoS One,2012,7(4):e35442. doi: 10.1371/journal.pone.0035442
|
[27] |
LASKAR A, RODGER E J, CHATTERJEE A, et al. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases[J]. Bioinformation,2011,7(5):239−245. doi: 10.6026/97320630007239
|
[28] |
FANG Z, ZHANG J, LIU B H, et al. Insight into the substrate specificity of keratinase KerSMD from Stenotrophomonas maltophilia by site-directed mutagenesis studies in the S1 pocket[J]. RSC Advances,2015,5:74953−74960. doi: 10.1039/C5RA12598G
|
[29] |
李宁, 王柏柯, 杨生保, 等. 21种植物八氢番茄红素合成酶的生物信息学分析[J]. 新疆农业科学,2015,52(12):2157−2165. [LI N, WANG B K, YANG S B, et al. Bioinformatics analysis of PSY in 21 plant species[J]. Xinjiang Agricultural Sciences,2015,52(12):2157−2165.
|
[30] |
富玉竹, 李欣, 李晔, 等. 16种微生物蛋白酶的生物信息学分析[J]. 江苏农业科学,2020,48(4):65−72. [FU Y Z, LI X, LI Y, et al. Bioinformatics analysis of sixteen microbial proteases[J]. Jiangsu Agricultural Sciences,2020,48(4):65−72.
|
[31] |
VALENCIA R, GONZÁLEZ V, UNDABARRENA A, et al. An integrative bioinformatic analysis for keratinase detection in marine-derived Streptomyces[J]. Marine Drugs,2021,19(6):286. doi: 10.3390/md19060286
|
[32] |
NGUYEN T T H, MYROLD D D, MUELLER R S. Distributions of extracellular peptidases across prokaryotic genomes reflect phylogeny and habitat[J]. Frontiers in Microbiology,2019,10:413. doi: 10.3389/fmicb.2019.00413
|