LI Xueqing, PANG Xin, GAO Huifang, et al. Bioinformatics Analysis of Extracellular Keratinase KerQH2 from Rheinheimera sp.QH[J]. Science and Technology of Food Industry, 2022, 43(9): 125−130. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080111.
Citation: LI Xueqing, PANG Xin, GAO Huifang, et al. Bioinformatics Analysis of Extracellular Keratinase KerQH2 from Rheinheimera sp.QH[J]. Science and Technology of Food Industry, 2022, 43(9): 125−130. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080111.

Bioinformatics Analysis of Extracellular Keratinase KerQH2 from Rheinheimera sp.QH

More Information
  • Received Date: August 10, 2021
  • Available Online: March 07, 2022
  • Objective: To analyze and predict the structural characteristics and the site of interaction with the substrate of keratinase KerQH2 from marine bacteria Rheinheimera sp.QH, and to provide theoretical basis for further study on the degradation mechanism of keratin substrate by KerQH2. Methods: The bioinformatics technology was used to analyze the structural characteristics of keratinase KerQH2 and its possible sites and key amino acids on the keratin substrate. Results: KerQH2 was an S8 family serine protease, and the proportion of random coil on the molecular surface of KerQH2 was high; The proportion of α-helix and β-sheet was low, which were mainly located inside the enzyme molecule. KerQH2 contained a conserved catalytic triad in the order of Asp8, His41, Ser197. The surface electrostatic potential in the catalytic triad area was neutral. The KerQH2 catalytic domain contained a large number of conserved polar amino acids and aromatic amino acids, in addition to the sequences related to substrate binding were rich in Gly and Ala. KerQH2 mainly cut the peptide bond formed between hydrophobic amino acid Val(V)/ILe(I) and polar amino acid Cys(C)/Gln(Q). Conclusion: The special structure of KerQH2 helps to degrade complex keratins, which may be an adaptation of marine bacteria to marine oligotrophic environment.
  • [1]
    YU J L, YU D W, CHECKLA D M, et al. Human hair keratins[J]. Journal of Investigative Dermatology,1993,101(1):56S−59S. doi: 10.1016/0022-202X(93)90501-8
    [2]
    EHRLICH F, LACHNER J, HERMANN M, et al. Convergent evolution of cysteine-rich keratins in hard skin appendages of terrestrial vertebrates[J]. Molecular Biology and Evolution,2020,37(4):982−993. doi: 10.1093/molbev/msz279
    [3]
    LI Q X. Progress in microbial degradation of feather waste[J]. Frontiers in Microbiology,2019,10:2717. doi: 10.3389/fmicb.2019.02717
    [4]
    VIDMAR B, VODOVNIK M. Microbial keratinases: Enzymes with promising biotechnological applications[J]. Food Technology & Biotechnology,2018,56(3):312−328.
    [5]
    GHAFFAR I, IMTIAZ A, HUSSAIN A, et al. Microbial production and industrial applications of keratinases: An overview[J]. International Microbiology,2018,21(4):163−174. doi: 10.1007/s10123-018-0022-1
    [6]
    VERMA A, SINGH H, ANWAR S, et al. Microbial keratinases: Industrial enzymes with waste management potential[J]. Critical Reviews in Biotechnology,2017,37(4):476−491. doi: 10.1080/07388551.2016.1185388
    [7]
    ABDEL-NABY M A, EL-REFAI H A, IBRAHIM M H A. Structural characterization, catalytic, kinetic and thermodynamic properties of keratinase from Bacillus pumilus FH9[J]. International Journal of Biological Macromolecules, 2017, 105(Pt 1): 973-980.
    [8]
    CHOIŃSKA-PULIT A, ŁABA W, RODZIEWICZ A. Enhancement of pig bristles waste bioconversion by inoculum of keratinolytic bacteria during composting[J]. Waste Management,2019,84:269−276. doi: 10.1016/j.wasman.2018.11.052
    [9]
    LI Z W, LIANG S, KE Y, et al. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3[J]. Communications Biology,2020,3(1):191−203. doi: 10.1038/s42003-020-0918-0
    [10]
    SHARMA I, KANGO N. Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization[J]. International Journal of Biological Macromolecules,2021,166:1046−1056. doi: 10.1016/j.ijbiomac.2020.10.260
    [11]
    SHAVANDI A, SILVA T H, BEKHIT A A, et al. Keratin: Dissolution, extraction and biomedical application[J]. Biomaterials Science,2017,5(9):1699−1735. doi: 10.1039/C7BM00411G
    [12]
    NNOLIM N E, UDENIGWE C C, OKOH A I, et al. Microbial keratinase: Next generation green catalyst and prospective applications[J]. Frontiers in Microbiology,2020,11:580164. doi: 10.3389/fmicb.2020.580164
    [13]
    UTOMO B, DJALALROSYIDI L E R, PUSPANINGSIH N N T, et al. Cleaning method by keratinase enzyme for improving quality edible bird nest[J]. Journal of Life Science and Biomedicine,2014,4(5):416−420.
    [14]
    ODETALLAH N H, WANG J J, GARLICH J D, et al. Keratinase in starter diets improves growth of broiler chicks[J]. Poultry Science,2003,82(4):664−670. doi: 10.1093/ps/82.4.664
    [15]
    BRANDELLI A, DAROIT D J, RIFFEL A. Biochemical features of microbial keratinases and their production and applications[J]. Applied Microbiology and Biotechnology,2010,85(6):1735−1750. doi: 10.1007/s00253-009-2398-5
    [16]
    VASILEVA-TONKOVA E, GOUSTEROVA A, NESHEV G. Ecologically safe method for improved feather wastes biodegradation[J]. International Biodeterioration & Biodegradation,2009,63(8):1008−1012.
    [17]
    李雷, 冯红. 两株芽孢杆菌降解羽毛比较及抗氧化肽分离[J]. 应用与环境生物学报,2018,24(1):172−176. [LI L, FENG H. Comparison of feather degradation by two Bacillus strains and separation of antioxidant peptides[J]. Chinese Journal of Applied and Environmental Biology,2018,24(1):172−176.
    [18]
    LANGE L, HUANG Y, BUSK P K. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance[J]. Applied Microbiology and Biotechnology,2016,100(5):2083−2096. doi: 10.1007/s00253-015-7262-1
    [19]
    ZHANG C, KIM S K. Research and application of marine microbial enzymes: Status and prospects[J]. Marine Drugs,2010,8(6):1920−1934. doi: 10.3390/md8061920
    [20]
    BONUGLI-SANTOS R C, DOS SANTOS VASCONCELOS M R, PASSARINI M R, et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications[J]. Frontiers in Microbiology,2015,6:269−283.
    [21]
    JAMIR K, SESHAGIRIRAO K. Fluorescence quenching, structural and unfolding studies of a purified cysteine protease, ZCPG from Zingiber montanum rhizome[J]. International Journal of Biological Macromolecules,2018,106:277−283. doi: 10.1016/j.ijbiomac.2017.08.019
    [22]
    武翠玲, 宋英达, 高慧芳, 等. Salinivibrio sp.YH4胞外丝氨酸蛋白酶EYHS耐盐性及生物信息学分析[J]. 盐湖研究,2021,29(1):105−110. [WU C L, SONG Y D, GAO H F, et al. Salt-tolerance and bioinformatics analysis on the serine protease EYHS secreted by Salinivibrio sp. YH4[J]. Journal of Salt Lake Research,2021,29(1):105−110.
    [23]
    AHMAD S, KUMAR V, RAMANAND K B, et al. Probing protein stability and proteolytic resistance by loop scanning: A comprehensive mutational analysis[J]. Protein Science,2012,21(3):433−446. doi: 10.1002/pro.2029
    [24]
    EMAMEH R Z, KAZOKAITĖ J, YAKHCHALI B. Bioinformatics analysis of extracellular subtilisin E from Bacillus subtilis[J]. Journal of Biomolecular Structure and Dynamics,2021,4:1−8.
    [25]
    蒋少龙, 蔡俊. 角蛋白酶及其应用研究进展[J]. 食品工业科技,2019,40(6):348−354, 360. [JIANG S L, CAI J. Research progress of keratinase and its application[J]. Science and Technology of Food Industry,2019,40(6):348−354, 360.
    [26]
    HE H L, GUO J, CHEN X L, et al. Structural and functional characterization of mature forms of metalloprotease E495 from Arctic sea-ice bacterium Pseudoalteromonas sp. SM495[J]. PLoS One,2012,7(4):e35442. doi: 10.1371/journal.pone.0035442
    [27]
    LASKAR A, RODGER E J, CHATTERJEE A, et al. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases[J]. Bioinformation,2011,7(5):239−245. doi: 10.6026/97320630007239
    [28]
    FANG Z, ZHANG J, LIU B H, et al. Insight into the substrate specificity of keratinase KerSMD from Stenotrophomonas maltophilia by site-directed mutagenesis studies in the S1 pocket[J]. RSC Advances,2015,5:74953−74960. doi: 10.1039/C5RA12598G
    [29]
    李宁, 王柏柯, 杨生保, 等. 21种植物八氢番茄红素合成酶的生物信息学分析[J]. 新疆农业科学,2015,52(12):2157−2165. [LI N, WANG B K, YANG S B, et al. Bioinformatics analysis of PSY in 21 plant species[J]. Xinjiang Agricultural Sciences,2015,52(12):2157−2165.
    [30]
    富玉竹, 李欣, 李晔, 等. 16种微生物蛋白酶的生物信息学分析[J]. 江苏农业科学,2020,48(4):65−72. [FU Y Z, LI X, LI Y, et al. Bioinformatics analysis of sixteen microbial proteases[J]. Jiangsu Agricultural Sciences,2020,48(4):65−72.
    [31]
    VALENCIA R, GONZÁLEZ V, UNDABARRENA A, et al. An integrative bioinformatic analysis for keratinase detection in marine-derived Streptomyces[J]. Marine Drugs,2021,19(6):286. doi: 10.3390/md19060286
    [32]
    NGUYEN T T H, MYROLD D D, MUELLER R S. Distributions of extracellular peptidases across prokaryotic genomes reflect phylogeny and habitat[J]. Frontiers in Microbiology,2019,10:413. doi: 10.3389/fmicb.2019.00413
  • Related Articles

    [1]CHEN Sunan, LENG Kailiang, YAN Mingyan, LI Yinping, YU Yuan. Preparation and Characterization of Chitinase from Marine Bacteria Aeromonas sp. YS-54[J]. Science and Technology of Food Industry, 2024, 45(16): 182-190. DOI: 10.13386/j.issn1002-0306.2023090122
    [2]AN Li, WANG Hong, MA Jingwei, YUAN Yongliang, ZHAI Nannan, ZHENG Lufei, WU Xujin. Medicinal and Nutritional Value of the Chemical Compositions of Dioscorea opposita Thunb. cv. Tiegun Peel Based on UPLC-Q/TOF-MS/MS and Bioinformatics[J]. Science and Technology of Food Industry, 2023, 44(2): 1-9. DOI: 10.13386/j.issn1002-0306.2021100320
    [3]DING Shujin, YANG Yanping, DENG Ruyou, MA Fuxian, YIN Tuo, ZHANG Hanyao. Bioinformatics Analysis of the NOT5 Gene in Saccharomyces uvarum[J]. Science and Technology of Food Industry, 2022, 43(18): 145-151. DOI: 10.13386/j.issn1002-0306.2021120309
    [4]LI Zhengyuan, XU Lianlian, SUN Jianyun, ZHENG Xiaohui, GAO Xiaokang. Construction and Bioinformatics Analysis of TRPV4 Prokaryotic Expression Purification System[J]. Science and Technology of Food Industry, 2022, 43(3): 137-144. DOI: 10.13386/j.issn1002-0306.2021060280
    [5]ZHOU Ting-yi, GAO Xin-chang, DANG Ya-li, PAN Dao-dong, CAO Jin-xuan. Research Development of the Bioactive Peptides Based on Bioinformatics[J]. Science and Technology of Food Industry, 2019, 40(12): 335-340. DOI: 10.13386/j.issn1002-0306.2019.12.054
    [6]ZHANG Xian-ang, HE Xiao, LIU Xiao-zhen, YE Qin-xia, HUANG Cai-shuang, WEN Li-hui, ZHANG Han-yao. Cloning and bioinformatics analysis of the ADR1 gene from Saccharomyces bayanus[J]. Science and Technology of Food Industry, 2018, 39(7): 90-96. DOI: 10.13386/j.issn1002-0306.2018.07.018
    [7]RAN Jun-jian, CAI Li-li, JIAO Ling-xia, LIANG Xin-hong, LU Yan-qing, ZHAO Rui-xiang. PlnD gene clone of Lactobacillus acidophilus zrx02 and bioinformatic analysis[J]. Science and Technology of Food Industry, 2017, (24): 137-141. DOI: 10.13386/j.issn1002-0306.2017.24.027
    [8]GE Ying, MIAO Ying-jie, WU Zu-fang, WENG Pei-fang, ZHANG Xin. Cloning and bioinformatics analysis of catalase gene (CAT1) from Castanea mollissima blume[J]. Science and Technology of Food Industry, 2017, (13): 124-129. DOI: 10.13386/j.issn1002-0306.2017.13.023
    [9]CHEN Xiao, SHEN Yan-qi, WANG Qing-man, DU Lin-na, LU Yu-bin, QIANG Wei-dong, GUO Yong-xin, WANG Hong-yu, YANG Ying, YANG Jing, WEI Jian. Cloning and bioinformatic analyzing of Unigene100791 base on safflower transcriptome sequence[J]. Science and Technology of Food Industry, 2016, (23): 145-149. DOI: 10.13386/j.issn1002-0306.2016.23.019
    [10]ZOU Ping, HE Guo-qing, WU Jian-ping. Screening of angiotensin I-converting enzyme inhibitory peptides from rapeseed by bioinformatics, QSAR and molecular docking[J]. Science and Technology of Food Industry, 2014, (17): 71-74. DOI: 10.13386/j.issn1002-0306.2014.17.006
  • Cited by

    Periodical cited type(2)

    1. 陈素艳,卢妍,吴光斌,陈发河. 黄秋葵酒渣纳米纤维素的制备工艺及表征分析. 食品研究与开发. 2024(17): 113-120 .
    2. 罗欣,周彦强,吴光斌,陈发河. 黄秋葵酒渣膳食纤维超微粉制备及特性研究. 食品与机械. 2021(08): 201-206 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (170) PDF downloads (14) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return