ZHAO Ping, CHEN Xiaohua, LIU Junxia, et al. Analysis of Physicochemical Indexes and Volatile Components of Giant Salamander Meat during Cold Storage[J]. Science and Technology of Food Industry, 2022, 43(9): 259−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080108.
Citation: ZHAO Ping, CHEN Xiaohua, LIU Junxia, et al. Analysis of Physicochemical Indexes and Volatile Components of Giant Salamander Meat during Cold Storage[J]. Science and Technology of Food Industry, 2022, 43(9): 259−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080108.

Analysis of Physicochemical Indexes and Volatile Components of Giant Salamander Meat during Cold Storage

More Information
  • Received Date: August 10, 2021
  • Accepted Date: February 21, 2022
  • Available Online: February 28, 2022
  • In order to explore the changes of physicochemical indexes and volatile components of giant salamander meat during cold storage (4 ℃, 0~8 d), the sensory evaluation, total volatile basic nitrogen (TVB-N) value and total bacterial count of giant salamander meat during cold storage were regularly determined, and headspace solid phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the changes of volatile components in giant salamander meat. The results showed that the sensory quality of giant salamander meat decreased gradually with the extension of refrigeration time, while TVB-N and total bacterial count increased. Among them, the sensory quality of giant salamander meat was not acceptable on the 5th day, the TVB-N value exceeded the upper acceptable limit (30 mg/100 g) on the 7th day, and the total bacterial count exceeded the upper acceptable limit (6 lg CFU/g) on the 6th day. A total of 58 volatile substances in 7 categories were detected in giant salamander meat at different refrigerating times. Among them, the contents of 14 alcohols and 12 esters were relatively higher. With the extension of refrigeration time, the alcohol content decreased, while the ester content increased, and other compounds fluctuated slightly during refrigeration storage. Cluster analysis showed that the giant salamander meat with different refrigeration time could be clustered into four categories, namely, 0~4 d, 5 d, 6~7 d, and 8 d. Correlation analysis showed that hexyl caproate, ethyl 2-methylbutyrate, 2-heptanone, 2, 3-butanedione and linalool could be used as potential markers of corruption and deterioration of giant salamander meat during cold storage. This study provides a reference for the freshness evaluation and quality control of giant salamander meat during cold storage.
  • [1]
    王文博, 刘品, 窦玲玲, 等. 中国大鲵研究概况[J]. 水生生物学报,2021,45(2):464−472. [WANG W B, LIU P, DOU L L, et al. A survey of Chinese giant salamander (Andrias davidianus)[J]. Acta Hydrobiologica Sinica,2021,45(2):464−472. doi: 10.7541/2021.2020.184
    [2]
    HE D, ZHU W, ZENG W, et al. Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus) for applications in healthcare industry by artificial cultivation: A review[J]. Food Science and Human Wellness,2018,7(1):1−10. doi: 10.1016/j.fshw.2018.03.001
    [3]
    李莉, 王锡昌, 刘源. 中国养殖大鲵的食用、药用价值及其开发利用研究进展[J]. 食品工业科技,2012,33(9):454−458. [LI L, WANG X C, LIU Y. Edible value, medical value and research progress in exploitation and utilization of the farmed breeding Chinese gaint salamander (Andrias davidianus)[J]. Science and Technology of Food Industry,2012,33(9):454−458.
    [4]
    倪冬冬. 养殖大鲵肉品质研究[D]. 重庆: 西南大学, 2017.

    NI D D. Study on the meat quality characteristics of farmed Chinese giant salamander (Andrias davidianus)[D]. Chongqing: Southwest University, 2017.
    [5]
    艾为明, 陈少波, 曾国权, 等. 人工模拟生态养殖子二代大鲵肌肉营养成分分析[J]. 水生态学杂志,2008,29(6):120−123. [AI W M, CHEN S B, ZENG G Q, et al. Nutritional components of the muscle of the artificial breeding Chinese giant salamander in simulated ecological condition[J]. Acta Hydrobiologica Sinica,2008,29(6):120−123.
    [6]
    耿敬章, 李新生, 党娅. 中国大鲵营养成分和功能因子研究进展[J]. 氨基酸和生物资源,2013,35(2):9−12. [GENG J Z, LI X S, DANG Y. Progress on nutrition and functional factors in Chinese giant salamander[J]. Amino Acids & Bictic Resources,2013,35(2):9−12.
    [7]
    金文刚, 别玲玲, 裴金金, 等. 基于GC-IMS技术分析炖煮过程中大鲵头汤挥发性风味物质[J]. 食品工业科技,2021,42(19):307−313. [JIN W G, BIE L L, PEI J J, et al. Volatile flavor compounds of giant salamander (Andrias davidianus) head soup during stewing based on GC-IMS Technology[J]. Science and Technology of Food Industry,2021,42(19):307−313.
    [8]
    LUO J, YANG X, CAO Y, et al. Structural characterization and in vitro immunogenicity evaluation of amphibian-derived collagen type II from the cartilage of Chinese giant salamander (Andrias davidianus)[J]. Journal of Biomaterials Science, Polymer Edition,2020,31(15):1941−1960. doi: 10.1080/09205063.2020.1786882
    [9]
    金文刚, 赵萍, 金晶, 等. 基于气相-离子迁移色谱分析大鲵不同可食部位挥发性成分指纹差异[J]. 食品科学, 2022, 42(2): 303-309.034.html.

    JIN W G, ZHAO P, JIN J, et al. Volatile component fingerprint analysis of giant salamander (Andrias davidiauns) from different edible parts based on gas chromatography-ion mobility spectroscopy[J]. Food Science, 2022, 42(2): 303-309.
    [10]
    HU Y, LI N, CHEN J, et al. Effect of chlorine dioxide on quality of giant salamander cutting meats in small modified atmosphere packaging[J]. Advance Journal of Food Science and Technology,2016,10(4):302−308. doi: 10.19026/ajfst.10.2073
    [11]
    JIN W, CHEN X, GENG J, et al. Quality characteristics and moisture mobility of giant salamander (Andrias davidianus) jerky during roasting process[J]. Journal of Food Quality,2021,2021:1−11.
    [12]
    JIN W, PEI J, CHEN D, et al. Influence of frying methods on quality characteristics and volatile flavor compounds of giant salamander (Andrias davidianus) meatballs[J]. Journal of Food Quality,2021,2021:8450072.
    [13]
    LEDUC F, TOURNAYRE P, KONDJOYAN N, et al. Evolution of volatile odorous compounds during the storage of European seabass (Dicentrarchus labrax)[J]. Food Chemistry,2012,131(4):1304−1311. doi: 10.1016/j.foodchem.2011.09.123
    [14]
    ZHAO H, YIN Y, LIU Y, et al. Flavor quality changes of Turbot (Psetta maxima) stored at −2 and 0 ℃[J]. Key Engineering Materials,2020,841:317−321. doi: 10.4028/www.scientific.net/KEM.841.317
    [15]
    贾哲, 陈晓婷, 潘南, 等. 双斑东方鲀在冷藏保鲜过程中挥发性风味物质的变化[J]. 食品科学,2021,42(20):188−196. [JIA Z, CHEN X T, PAN N, et al. Changes of volatile flavor compounds in Takifugu bimaculatus during refrigeration storage[J]. Food Science,2021,42(20):188−196. doi: 10.7506/spkx1002-6630-20200920-261
    [16]
    辛茜, 陈德经, 陈小华, 等. 顶空固相微萃取-气相色谱-质谱联用分析大鲵不同部位挥发性成分[J]. 食品科学,2019,40(20):249−254. [XIN X, CHEN D J, CHEN X H, et al. Analysis of volatile components in different parts of giant salamander by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Food Science,2019,40(20):249−254. doi: 10.7506/spkx1002-6630-20181116-188
    [17]
    CHEN X, JIN W, CHEN D, et al. Collagens made from giant salamander (Andrias davidianus) skin and their odorants[J]. Food Chmeistry,2021,361(6):130061.
    [18]
    刘欢, 马翼飞, 单钱艺, 等. 冰藏和微冻贮藏对大鲵肌肉品质的影响[J]. 食品与发酵工业, 2021, 47(23): 199-204.

    LIU H, MA Y F, SHAN Q Y, et al. Effects of ice and micro-frozen storage on the quality of Andrias davidianus[J]. Food and Fermentation Industries, 2021, 47(23): 199-204.
    [19]
    杨慧, 陈德经, 陈海涛, 等. 不同冻结方式对大鲵肉品质的影响[J]. 食品科技,2019,44(5):121−127. [YANG H, CHEN D J, CHEN H T, et al. Effects of different freezing methods on the quality of Chinese giant salamander meat[J]. Food Science and Technology,2019,44(5):121−127.
    [20]
    王美婧. 短期冷藏过程中乌鳢肌原纤维蛋白变化及其应用研究[D]. 杭州: 浙江工商大学, 2020.

    WANG M J. Changes of myofirillar protein in snakehead during short-term refrigeration and its application[D]. Hangzhou: Zhejing Gongshang University, 2020.
    [21]
    LI X, LI J, ZHU J, et al. Postmortem changes in yellow grouper (Epinephelus awoara) fillets stored under vacuum packaging at 0 °C[J]. Food Chemistry,2011,126(3):896−901. doi: 10.1016/j.foodchem.2010.11.071
    [22]
    GRAM L, HUSS H. Microbiological spoilage of fish and fish products[J]. International Journal of Food Microbiology,1996,33(1):121−37. doi: 10.1016/0168-1605(96)01134-8
    [23]
    FAN W, CHI Y, ZHANG S. The use of a tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice[J]. Food Chemistry,2007,108:148−153.
    [24]
    赵巧灵. 金枪鱼在冷藏过程中鲜度变化及差异蛋白质组学研究[D]. 杭州: 浙江工商大学, 2015.

    ZHAO Q L. Freshness variation and differential proteome analysis of tuna (Thunnus obesus) during refrigerated storage[D]. Hangzhou: Zhejing Gongshang University, 2015.
    [25]
    孙宝国. 食用调香术[M]. 北京: 化学工业出版社, 2003.

    SUN B G. Edible fragrance adjustment[M]. Beijing: Chemical Industrial Press, 2003.
    [26]
    TOLDRA F, FLORES M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham[J]. Critical Reviews in Food Science and Nutrition,1998,38(4):331−352. doi: 10.1080/10408699891274237
    [27]
    张晶晶, 梁萍, 施文正, 等. 不同冷藏期鲳鱼及草鱼气味变化分析[J]. 食品科学,2016,37(20):31−36. [ZHANG J J, LIANG P, SHI W Z, et al. Changes in volatile compounds of pomfret and grass carp during different storage periods[J]. Food Science,2016,37(20):31−36. doi: 10.7506/spkx1002-6630-201620006
    [28]
    BAI J, BAKER S, SCHNEIDER G, et al. Aroma profile characterization of Mahi-Mahi and Tuna for determining spoilage using purge and trap gas chromatography-mass spectrometry[J]. Journal of Food Science,2019,84(3):1−9.
    [29]
    陈俊卿, 王锡昌. 顶空固相微萃取-气相色谱-质谱法分析白鲢鱼中的挥发性成分[J]. 质谱学报,2005(2):76−80. [CHEN J Q, WANG X C. Analysis of odors from silver carp by headspace-solid phase microextraction-gas chromatography-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2005(2):76−80. doi: 10.3969/j.issn.1004-2997.2005.02.003
    [30]
    陈桂平. 草鱼低温贮藏期间质构及风味物质变化研究[D]. 长沙: 湖南农业大学, 2014.

    CHEN G P. Study on changes of texture and flavor compounds in grass carp during low temperature storage[D]. Changsha: Hunan Agricultural University, 2014.
    [31]
    CASABURI A, PIOMBINO P, NYCHAS G, et al. Bacterial populations and the volatilome associated to meat spoilage[J]. Food Microbiology, 2015, 45(Part A): 83−102.
    [32]
    SHI Y, LI D, KONG Y, et al. Enhanced antibacterial efficacy and mechanism of octyl gallate/beta-cyclodextrins against Pseudominas fluoresces and Vibrio parahaemolyticus and incorporated electrospun nanofibers for Chinese giant salamander fillets preservation[J]. International Journal of Food Microbiology,2022,361:109460. doi: 10.1016/j.ijfoodmicro.2021.109460
    [33]
    周才琼, 代小容, 杜木英. 酸肉发酵过程中挥发性风味物质形成的研究[J]. 食品科学,2010,31(7):98−104. [ZHOU C Q, DAI X R, DU M Y. Formation of volatile flavor components during sour meat processing[J]. Food Science,2010,31(7):98−104.
    [34]
    JOFFRAUD J, LEROI F, ROY C, et al. Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon[J]. International Journal of Food Microbiology,2001,66(3):175−184. doi: 10.1016/S0168-1605(00)00532-8
    [35]
    WIERDA R, FLETCHER G, XU L, et al. Analysis of volatile compounds as spoilage indicators in fresh king salmon (Oncorhynchus tshawytscha) during storage using SPME-GC-MS[J]. Journal of Agricultural and Food Chemistry,2006,54(22):8480−8490. doi: 10.1021/jf061377c
    [36]
    王建辉, 杨晶, 刘永乐, 等. 不同贮藏条件下草鱼肌肉挥发性成分的变化分析[J]. 现代食品科技,2014,30(9):297−303. [WANG J H, YANG J, LIU Y L, et al. Variation in volatile components of grass carp muscle under different storage conditions[J]. Modern Food Science and Technology,2014,30(9):297−303.
    [37]
    VARLET V, PROST C, SEROT T. Volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation[J]. Food Chemistry,2007,105(4):1536−1556. doi: 10.1016/j.foodchem.2007.03.041
  • Cited by

    Periodical cited type(35)

    1. 李秀清,何江龙,李盼盼,纪宝玉,裴莉昕,陈随清,董诚明. 麦冬不同部位红外光谱分析及成分含量的测定. 饲料工业. 2025(03): 112-117 .
    2. 罗欣,胡杨,倪兴婷,谈小飞,黄涅,赖富丽,李强,杨强. 九蒸九制对九华山多花黄精品质的影响. 中国酿造. 2025(02): 144-149 .
    3. 袁怡菁,王秋红. 黄精化学成分、药理作用研究进展及质量标志物预测分析. 中医药信息. 2024(02): 72-80+86 .
    4. 张倜培,李青,包鸿慧,沈正兴,石娟,唐前勇,程一方,周睿. 干燥方式对绿碎茶多酚提取物体外抗氧化和抗糖尿病及乙酰胆碱酯酶抑制活性的影响. 食品与发酵工业. 2024(04): 77-84 .
    5. 罗亚惠,宿珠琳,马永生,邹建. 超声辅助法提取柚子皮多酚的工艺优化. 现代食品. 2024(01): 51-56 .
    6. 黄素艳,崔柯鑫,周德庆,王珊珊,王明丽,王大军. 植物多酚改善肠道屏障及糖脂代谢的研究进展. 食品研究与开发. 2024(06): 218-224 .
    7. 关洋莹,唐守方,彭雨鑫,李梦媛,刘赢心,蒋璥远,冯淑婷,张新民,武毅. 桦褐孔菌抗糖尿病的研究进展. 长春中医药大学学报. 2024(04): 463-467 .
    8. 王爱灵,张梅,申娜娜,徐梦文,章骏伟,李瑞龙,兰伟. 黑果腺肋花楸果酒生产工艺研究进展. 滁州学院学报. 2024(02): 21-28 .
    9. 符兵,周东来,李庆荣,邢东旭. 桑叶及其活性物质对动物肠道微生物的调控作用研究进展. 中国畜牧兽医. 2024(06): 2460-2470 .
    10. 王菁,乔勇进,柳洪入,王晓,叶章颖,林思敏,王春芳. 超高压在植物活性物质提取中的应用研究进展. 农业工程学报. 2024(18): 272-282 .
    11. 陈睿,李佳轩,王旭,谢双龙,覃继肖,许一清,卢琦,田兴舟. 刺梨籽对肉兔消化代谢、血浆生化指标、屠宰性能及肉品质的影响. 动物营养学报. 2024(10): 6673-6684 .
    12. 郭子斌,魏静,范蓓,王凤忠,蔡如玉,孙晶. 辅助降血糖茄皮含片制备. 热带农业科学. 2024(08): 65-74 .
    13. 薛惠丹,张未希,邓诏隆,董瑞杰,陈瑞飞,安靖. 徐香猕猴桃果皮多酚提取工艺的优化及其单体抗氧化活性研究. 陕西科技大学学报. 2024(06): 31-39 .
    14. 那治国,余爽,贺书珍,初众. 低GI杂粮可可冲调粉辅助降血糖作用. 食品工业科技. 2023(01): 28-37 . 本站查看
    15. 陈燕萌,魏金兰,陈凤,黄宇扬,李珊珊,郭松. 假蒟叶多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 76-84 .
    16. 邱建强,黄文,王玉玺,彭凯. 单宁对动物肠道微生物调控的研究进展. 动物营养学报. 2023(02): 772-781 .
    17. 陈晓晨,杜希萍,周莉鹃,伍菱,李志朋,杨远帆. 坛紫菜多酚工艺优化及降血糖和抗氧化活性研究. 食品与机械. 2023(02): 140-146 .
    18. 周爽,黄莉,王彦美,张韩杰,赵莉,贺子阳,孙素洁. 植物多酚的生物利用度及其降血糖活性研究进展. 食品研究与开发. 2023(06): 211-217 .
    19. 沈晓静,袁文娟,邵俊文,文午,赵品材,洪金琪,顾春燕,姜薇薇. 云南小粒咖啡生豆的抗氧化及α-淀粉酶抑制活性研究. 中国食品添加剂. 2023(05): 96-102 .
    20. 师英春,廖森泰,杨琼,邹宇晓,李倩. 植物多酚和多糖经肠道微生态途径互作调节糖脂代谢的研究进展. 食品安全质量检测学报. 2023(08): 109-118 .
    21. 杨淑珺,胡睿智,贺建华,伍树松. 植物多酚对脂肪酸代谢的调控作用及潜在机制. 中国畜牧杂志. 2023(07): 14-20 .
    22. 史凡,杨红. 纳米结构脂质载体制备及在功能食品中的应用研究进展. 食品工业科技. 2023(15): 1-6 . 本站查看
    23. 陈鑫,王晨,王黎明,赵抒娜,赵芸,刘孟涛,孟庆佳. L-阿拉伯糖复配糖对小鼠血糖的影响. 食品工业科技. 2023(17): 392-398 . 本站查看
    24. 李琳琳,王乐,尹卫,代爽,刘晓军,梁健,王煜伟. 紫皮大蒜多酚分离纯化及体外降血糖活性研究. 中国调味品. 2023(09): 18-23 .
    25. 王露,黄立新,刘磊. 食源性多酚对α-淀粉酶作用大米淀粉活性的影响. 中国粮油学报. 2023(08): 131-137 .
    26. 唐双庆,陈禅友,王亚珍,王红波. 食用豆类资源中酚类化合物研究进展. 中国调味品. 2023(12): 200-205+212 .
    27. 徐小云,伍舒华,赖敏成,廖延智,吴文,欧纯宜. 高效液相色谱测定龙眼核中多酚含量方法优化. 广州化工. 2023(22): 61-64 .
    28. 彭言劼,魏雪莲,周勇,胡强,胡霞,宋春草. 不同果袋对红富士葡萄果实品质的影响. 中国南方果树. 2022(02): 134-138 .
    29. 陈旭,徐楚炎,范露,石玉. 山楂叶多酚提取工艺及其降糖降脂应用研究. 饲料研究. 2022(05): 78-83 .
    30. 滕欢欢,王仁中,吴德玲,金传山,柳春风,唐旭,黄圣卓,许凤清. 多花黄精炮制前后不同极性部位抗氧化与降血糖活性研究. 食品与发酵工业. 2022(08): 70-75 .
    31. 吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
    32. 胡德胜,李健,张岩,钟丹苗,方雪飞,廖营忠,苏干光. 林下栽培的大球盖菇多酚提取工艺条件优化. 中国食用菌. 2022(08): 65-70 .
    33. 张杰,党斌,杨希娟. 植物多酚的生理活性、抑菌机理及其在食品保鲜中的应用研究进展. 食品工业科技. 2022(24): 460-468 . 本站查看
    34. 马雪,赵丹,张瑞,琚艳君,赵多勇. 多酚类化合物检测分析方法研究进展. 食品安全质量检测学报. 2021(11): 4575-4582 .
    35. 高若容,王钿烈,黄雪松. 固相萃取-高效液相色谱法同时测定蒜皮中六种酚类物质. 食品与发酵工业. 2021(22): 266-272 .

    Other cited types(23)

Catalog

    Article Metrics

    Article views (215) PDF downloads (33) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return