WANG Minshen, LI Yong, FENG Jin, et al. Optimization of Ultrafiltration Process of Yellow Serofluid by Response Surface Methodology and Its Metabolomics Analysis[J]. Science and Technology of Food Industry, 2022, 43(7): 224−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080098.
Citation: WANG Minshen, LI Yong, FENG Jin, et al. Optimization of Ultrafiltration Process of Yellow Serofluid by Response Surface Methodology and Its Metabolomics Analysis[J]. Science and Technology of Food Industry, 2022, 43(7): 224−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080098.

Optimization of Ultrafiltration Process of Yellow Serofluid by Response Surface Methodology and Its Metabolomics Analysis

More Information
  • Received Date: August 10, 2021
  • Available Online: February 09, 2022
  • Ultrafiltration separation technology was used to concentrate yellow serofluid in order to obtain protein efficiently and reduce the pollution of yellow serofluid and improve its comprehensive utilization. On the basis of single factor experiment, the ultrafiltration process of yellow serofluid was optimized by response surface. The contents of protein and total sugar, biochemical oxygen demand(BOD), chemical oxygen demand(COD) and metabolomics of yellow serofluid before and after ultrafiltration were determined. The results showed that the optimal parameters of ultrafiltration concentration of yellow serofluid were as follows: pH6.2, operating pressure 0.22 MPa, temperature 31 ℃. The membrane flux was (51.8±1.3) L/m2·h, the protein interception rate was 76.84%, the total sugar transmittance rate was 79.10%, and the removal rates of BOD and COD were 69.27% and 61.03% respectively. Metabolomics analysis of the concentrated and translucent solutions showed that there were significant differences in the contents of 114 compounds in the concentrated and translucent solutions. The results show that ultrafiltration can effectively separate proteins and sugars from yellow serofluid, and has a certain enrichment effect on small molecules, which provides a certain reference for the further development and utilization of yellow serofluid.
  • [1]
    李云捷, 周哲, 刘志, 等. 大豆黄浆水综合利用研究进展[J]. 科技与创新,2016,53(5):9−10. [LI Y J, ZHOU Z, LIU Z, et al. Research progress on comprehensive utilization of soybean yellow pulp water[J]. Science and Technology & Innovation,2016,53(5):9−10.
    [2]
    王秋霜, 应铁进. 大豆制品生产废水综合开发研究进展[J]. 食品科学,2007,334(9):594−599. [WANG Q S, YING T J. Research progress on wastewater utilization in soybean processing[J]. Food Science,2007,334(9):594−599. doi: 10.3321/j.issn:1002-6630.2007.09.146
    [3]
    王胜男, 王冰冶, 曲丹妮, 等. 黄浆水中功能性成分研究及利用现状[J]. 渤海大学学报(自然科学版),2021,42(1):22−28. [WANG S N, WANG B Z, QU D N, et al. Research and utilization status of functional components in soy whey[J]. Journal of Bohai University(Natural Science Edition),2021,42(1):22−28.
    [4]
    张焕焕, 徐雅芫, 李婷婷, 等. 豆制品黄浆水综合利用研究现状及发展趋势[J]. 农产品加工,2021,520(2):79−83,86. [ZHANG H H, XU Y W, LI T T, et al. Research status and development trend of comprehensive utilization of soybean yellow pulp water[J]. Farm Products Processing,2021,520(2):79−83,86.
    [5]
    LI G L, LI H, TAN Y Y, et al. Improved S-adenosyl-l-methionine production in saccharomyces cerevisiae using tofu yellow serofluid[J]. Journal of Biotechnology,2020:100−106.
    [6]
    ZHANG J, WANG H, XIAO Y M, et al. A simple approach for synthesizing of fluorescent carbon quantum dots from tofu wastewater[J]. Nanoscale Research Letters,2017,12(1):611−611. doi: 10.1186/s11671-017-2369-1
    [7]
    ZHU H G, SUZUKI T, TSYGANKOV A A, et al. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels[J]. International Journal of Hydrogen Energy,1999,24(4):305−310. doi: 10.1016/S0360-3199(98)00081-0
    [8]
    陈斌, 杨玥熹, 李自成, 等. 豆干黄浆水发酵条件优化及其作为酸浆豆腐凝固剂的应用研究[J]. 中国粮油学报,2021,36(9):157−163. [CHEN B, YANG Y X, LI Z C, et al. Fermentation optimization of yellow serofluid produced from manufactory of compressed tofu and its application as coagulate for tofu production[J]. Journal of the Chinese Cereals and Oils Association,2021,36(9):157−163. doi: 10.3969/j.issn.1003-0174.2021.09.026
    [9]
    王珊珊, 孙晓琦, 马玉洁, 等. 响应面法优化黄浆水发酵液制备工艺及其抗氧化活性研究[J]. 食品研究与开发,2020,41(4):45−51. [WANG S S, SUN X Q, MA Y J, et al. Optimization of preparation of fermented tofu whey by response surface methodology and their antioxidant activity[J]. Food Research and Development,2020,41(4):45−51.
    [10]
    赵丽颖, 符群. 膜分离技术在大豆乳清废水回收中应用[J]. 粮食与油脂,2002(9):48−49. [ZHAO L Y, FU Q. Application of membrane separation technology in soybean whey wastewater recovery[J]. Cereals & Oils,2002(9):48−49. doi: 10.3969/j.issn.1008-9578.2002.09.023
    [11]
    陈婷. 基于超滤膜分离技术回收乳清蛋白工艺研究[D]. 兰州: 甘肃农业大学, 2011

    CHEN T. Study of reclamation of whey protein based on technology of ultrafiltration membrane separation[D]. Lanzhou: Gansu Agricultural University, 2011.
    [12]
    宋凯强, 刘鹏莉, 郑振佳, 等. 大蒜降压肽的制备及超滤分离[J]. 食品工业科技,2019,40(19):73−80. [SONG K Q, LIU P L, ZHENG Z J, et al. Preparation and ultrafiltration separation of garlic antihypertensive peptide[J]. Science and Technology of Food Industry,2019,40(19):73−80.
    [13]
    刘娜, 彭黔荣, 杨敏, 等. 膜分离技术在食品废水处理和生产中的应用[J]. 食品研究与开发,2014,35(3):114−118. [LIU N, PENG Q R, YANG M, et al. The application of membrane separation technology in food wastewater treatment and production[J]. Food Research and Development,2014,35(3):114−118. doi: 10.3969/j.issn.1005-6521.2014.03.032
    [14]
    马丽苹. 银条多糖分离纯化、抗肿瘤和免疫调节活性研究[D]. 南京: 南京农业大学, 2012

    MA L P. Study on isolation, purification, antitumor and immunomodulatory activities of polysaccharides from silver stripe[D]. Nanjing: Nanjing Agricultural University, 2012.
    [15]
    ROBYT F J, BEMIS S. Use of the autoanalyzer for determining the blue value of the amylose-iodine complex and total carbohydrate by phenol-sulfuric acid[J]. Analytical Biochemistry,1967,19(1):56−60. doi: 10.1016/0003-2697(67)90133-9
    [16]
    刘启月, 李勇, 陈小龙, 等. 基于代谢组学分析桃胶中酚类化合物含量及抗氧化活性[J]. 江苏农业学报,2021,37(3):746−753. [LIU Q Y, LI Y, CHEN X L, et al. Analysis on phenolics contents and antioxidant activity in peach gum based on metabolomics[J]. Jiangsu Journal of Agricultural Sciences,2021,37(3):746−753.
    [17]
    冯晓, 任南琪, 陈兆波. 超滤膜分离工艺处理大豆乳清蛋白废水的效能[J]. 化工学报,2009,60(6):1477−1486. [FENG X, REN N Q, CHEN Z B. Performance of ultrafiltration membrane technology in treatment of soy whey wastewater[J]. CIESC Journal,2009,60(6):1477−1486. doi: 10.3321/j.issn:0438-1157.2009.06.022
    [18]
    陈寿鹏. 超滤分离大豆乳清蛋白的研究[J]. 食品科学,1994(8):3−7. [CHEN S P. Study on separation of soybean whey protein by ultrafiltration[J]. Food Science,1994(8):3−7. doi: 10.3321/j.issn:1002-6630.1994.08.024
    [19]
    张鸿发, 陈寿鹏, 杨四国, 等. 超滤浓缩大豆乳清蛋白[J]. 食品研究与开发,2001(3):3−4. [ZHANG H F, CHEN S P, YANG S G, et al. Ultrafiltration concentration of soybean whey protein[J]. Food Research and Development,2001(3):3−4. doi: 10.3969/j.issn.1005-6521.2001.03.001
    [20]
    冯颖, 于磊, 孟宪军, 等. 响应面法优化超滤提纯无梗五加果多糖工艺[J]. 食品科学,2013,34(2):67−71. [FENG Y, YU L, MENG X J, et al. Optimization of ultrafiltration purification of polysaccharides from Acanthopanax sessiliflorus by response surface methodology[J]. Food Science,2013,34(2):67−71.
    [21]
    田旭, 刘丽莎, 彭义交, 等. 膜技术集成对黄浆水乳清蛋白的高效分离[J]. 食品科技,2018,43(1):81−87. [TIAN X, LIU L S, PENG Y J, et al. Efficient separation of soybean whey protein by membrane separation technology[J]. Food Science and Technology,2018,43(1):81−87.
    [22]
    王周利, 伍小红, 岳田利, 等. 苹果酒超滤澄清工艺的响应面法优化[J]. 农业机械学报,2014,45(1):209−213,221. [WANG Z L, WU X H, YUE T L, et al. Application of ultra-filtration technology in cider clarification[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):209−213,221. doi: 10.6041/j.issn.1000-1298.2014.01.033
    [23]
    王博, 斯聪聪, 程国才. 响应面优化超滤膜分离灵芝多糖工艺[J]. 食品工业,2015,36(12):1−4. [WANG B, SI C C, CHENG G C. Response surface optimization on separation technology of polysaccharides from Ganoderma lucidum by ultrafiltration membrane[J]. The Food Industry,2015,36(12):1−4.
    [24]
    郑玉玺. 大豆黄浆水回收利用研究进展[J]. 广州城市职业学院学报,2015,9(2):58−61. [ZHENG Y X. Research and progress on recycling of soybean yellow slurry water[J]. Journal of Guangzhou City Polytechnic,2015,9(2):58−61. doi: 10.3969/j.issn.1674-0408.2015.02.010
    [25]
    田翔, 薄涛, 康瑜, 等. 基于GC-MS评估不同预处理对小米代谢物提取的影响[J/OL]. 中国粮油学报: 1−15. http://kns.cnki.net/kcms/detail/11.2864.TS.20210714.1051.006.html

    TIAN X, BO T, KANG Y, et al. Effects of pretreatment methods on extraction of millet metabolites based on GC-MS analysis[J/OL]. Journal of the Chinese Cereals and Oils Association, 1−15. http://kns.cnki.net/kcms/detail/11.2864.TS.20210714.1051.006.html.
    [26]
    ALONSO-SALCES R M, CARLOS H, ALEJANDRO B, et al. Technological classification of Basque cider apple cultivars according to their polyphenolic profiles by pattern recognition analysis[J]. J Agric Food Chem,2004(26):8006−8016.
    [27]
    宋江峰, 李大婧, 刘春泉, 等. 甜糯玉米软罐头主要挥发性物质主成分分析和聚类分析[J]. 中国农业科学,2010,43(10):2122−2131. [SONG J F, LI D J, LIU C Q, et al. Principal components analysis and cluster analysis of flavor compositions in waxy corn soft can[J]. Scientia Agricultura Sinica,2010,43(10):2122−2131.
    [28]
    ELLINGTON A A, BERHOW M A, SINGLETARY A K W. Inhibition of AKT signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid b-group soyasaponins in colon cancer cells[J]. Carcinogenesis, 2006, 27(2): 298−306
    [29]
    JULIANA M D, ESPITIA P, REJANE A B. Formononetin: Biological effects and uses-A review[J]. Food Chemistry,2021,359:129975−129975. doi: 10.1016/j.foodchem.2021.129975
    [30]
    WU J J. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer [J]. Aging, 2021, 13(undefined).
    [31]
    ZHAO R S, BORA Y, SUMI O, et al. Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo[J]. Journal of Functional Foods,2015,12:208−218. doi: 10.1016/j.jff.2014.11.022
    [32]
    PRAHADEESH N, SITHAMBARESAN M, MATHIVENTHAN U. A study on hydrogen peroxide scavenging activity and ferric reducing ability of simple coumarins[J]. Emerging Science Journal,2018,2(6):417−417. doi: 10.28991/esj-2018-01161
  • Cited by

    Periodical cited type(4)

    1. 柳富杰,黄释慧,潘莉莉. 纳米碳酸钙表面改性沸石对模拟蔗汁中酚酸的吸附性能. 食品与机械. 2024(01): 33-39 .
    2. 玉澜,时倩倩,文胜,陈燕萌,兰兴先,蒋才云. 白云石/三聚氰胺复合材料制备及吸附结晶紫性能研究. 化学研究与应用. 2024(08): 1718-1724 .
    3. 陈燕萌,陈广成,蒋才云. 沃柑皮基活性炭的制备及其对结晶紫的吸附研究. 化学研究与应用. 2023(06): 1387-1395 .
    4. 王未君,杨博,李文林,马旋,刘昌盛. 不同种类二氧化硅的表征及其在浓香菜籽油低温吸附精炼中的应用. 食品科学. 2023(16): 1-7 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return