PENG Dong, LUO Zhifeng, TAO Qian, et al. Extraction of Anthraquinone from Fermented Morinda officinalis and Its Antioxidant and Hypoglycemic Activities[J]. Science and Technology of Food Industry, 2022, 43(7): 214−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080091.
Citation: PENG Dong, LUO Zhifeng, TAO Qian, et al. Extraction of Anthraquinone from Fermented Morinda officinalis and Its Antioxidant and Hypoglycemic Activities[J]. Science and Technology of Food Industry, 2022, 43(7): 214−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080091.

Extraction of Anthraquinone from Fermented Morinda officinalis and Its Antioxidant and Hypoglycemic Activities

More Information
  • Received Date: August 08, 2021
  • Available Online: February 09, 2022
  • Objective: Optimization of the extraction process of anthraquinone from fermented Morinda officinalis and investigated its antioxidant and hypoglycemic activities. Methods: Taking the extraction ratio of anthraquinone as the evaluation index, the optimal conditions were obtained by response surface methodology. In vitro, the antioxidant activity was evaluated by determining the scavenging ability of anthraquinone against DPPH free radical, hydroxyl free radical and superoxide anion assays. In vivo, the antioxidant activity was evaluated by measuring the effect of anthraquinone on the life span and motility of Caenorhabditis elegans. The hypoglycemic activity in vitro was evaluated by determining the inhibition rate of anthraquinone against alpha-glucosidase and alpha-amylase. The hypoglycemic activity in vivo was evaluated by measuring the effect of anthraquinone on glucose consumption of IR-HepG2 cells. Results: The optimal conditions were obtained as follows: ethanol concentration, 45%; solid-to-solvent ratio, 1:41 (g/mL); temperature, 65 ℃; and time, 1.60 h. Under these conditions, the extraction ratio of anthraquinone was 90.37%. In the antioxidant assay in vitro, anthraquinone exhibited good scavenging ability against DPPH free radicals, hydroxyl free radicals, and superoxide anions. In the antioxidant assay in vivo, anthraquinone significantly prolonged the life span (P<0.05), and enhanced the motility of Caenorhabditis elegans (P<0.05). The IC50 values of anthraquinone on alpha-amylase and alpha-glucosidase were 0.588 and 0.575 mg/mL, respectively. Glucose consumption of IR-HepG2 cells in the anthraquinone group (1.2 mg/mL) was increased by 47.42% compared with the model group. Conclusion: The anthraquinone from fermented Morinda officinalis exhibited good antioxidant and hypoglycemic activities, facilitating the development of natural therapeutic agents for diabetes treatment.
  • [1]
    LIAO Z Z, ZHANG J Y, LIU B, et al. Polysaccharide from okra(Abelmoschus esculentus(L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model[J]. Molecules,2019,24(10):1906. doi: 10.3390/molecules24101906
    [2]
    ORME C M, BOGAN J S. Sorting out diabetes[J]. Science,2009,324(5931):1155−1156. doi: 10.1126/science.1174841
    [3]
    POTIPIRANUN T, ADISAKWATTANA S, WORAWALAI W, et al. Identification of pinocembrin as an anti-glycation agent and -glucosidase inhibitor from fingerroot(Boesenbergia rotunda): The tentative structure-activity relationship towards MG-trapping activity[J]. Molecules,2018,23(12):3365. doi: 10.3390/molecules23123365
    [4]
    杨小倩, 孙佳明, 吴楠, 等. 玉蜀黍不同部位提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用[J]. 食品工业科技,2021,42(1):15−21, 27. [YANG X Q, SUN J M, WU N, et al. Inhibitory effects of extracts from different parts of maize on α-glucosidase and α-amylase[J]. Science and Technology of Food Industry,2021,42(1):15−21, 27.
    [5]
    CHAI W F, TANG K S. Protective potential of cerium oxide nanoparticles in diabetes mellitus[J]. Journal of Trace Elements in Medicine and Biology,2021,66:126742. doi: 10.1016/j.jtemb.2021.126742
    [6]
    WU Z Q, CHEN D L, LIN F H, et al. Effect of bajijiasu isolated from Morinda officinalis F. C. how on sexual function in male mice and its antioxidant protection of human sperm[J]. Journal of Ethnopharmacology,2015,164:283−292. doi: 10.1016/j.jep.2015.02.016
    [7]
    ZHANG J H, XIN H L, XU Y M, et al. Morinda officinalis How. – A comprehensive review of traditional uses, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,213:230−255. doi: 10.1016/j.jep.2017.10.028
    [8]
    LUO H, WANG Y, QIN Q Y, et al. Anti-inflammatory naphthoates and anthraquinones from the roots of Morinda officinalis[J]. Bioorganic Chemistry,2021,110:104800. doi: 10.1016/j.bioorg.2021.104800
    [9]
    WANG J H, XU S Q, MEI Y, et al. A high-quality genome assembly of Morinda officinalis, a famous native southern herb in the Lingnan region of southern China[J]. Horticulture Research,2021,8(1):135−135. doi: 10.1038/s41438-021-00551-w
    [10]
    SONG B, WANG F J, WANG W. Effect of aqueous extract from Morinda officinalis F. C. How on microwave-induced hypothalamic-pituitary-testis axis impairment in male sprague-dawley rats[J]. Evidence-based Complementary and Alternative Medicine,2015,2015:360730.
    [11]
    ZHANG S N, YI W N, WANG Z H, et al. Ultrahigh pressure extraction of polysaccharide from Morinda officinalis and effect on the polysaccharide structure[J]. Separation Science and Technology,2021,56(10):1741−1751. doi: 10.1080/01496395.2020.1794896
    [12]
    PHUONG A V T, VO V M, CHAU T V, et al. Iridoids and anthraquinones from the roots of Morinda officinalis[J]. Vietnam Journal of Chemistry,2021,59(1):27−31.
    [13]
    谭丽容, 代文豪, 罗志锋, 等. 不同菌种发酵对巴戟天活性成分含量的影响[J]. 中国酿造,2018,37(12):121−125. [TAN L R, DAI W H, LUO Z F, et al. Effect of fermentaion with different strains on active componets content in Morinda officinalis How[J]. China Brewing,2018,37(12):121−125. doi: 10.11882/j.issn.0254-5071.2018.12.024
    [14]
    LI P, TIAN W N, ZHUO J, et al. Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt[J]. Frontiers in Microbiology,2018,9:2216. doi: 10.3389/fmicb.2018.02216
    [15]
    YU G Y, ZHAO J, WEI Y L, et al. Physicochemical properties and antioxidant activity of pumpkin polysaccharide(Cucurbita moschata Duchesne ex Poiret) modified by subcritical water[J]. Foods,2021,10(1):197. doi: 10.3390/foods10010197
    [16]
    SMIRNOFF N, CUMBES Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Pergamon,1989,28(4):1057−1060.
    [17]
    TANG Q L, HUANG G L. Preparation and antioxidant activities of cuaurbit polysaccharide[J]. International Journal of Biological Macromolecules,2018,117:362−365. doi: 10.1016/j.ijbiomac.2018.05.213
    [18]
    WANG C Y, SAAR V, LEUNG K L, et al. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans[J]. Neurobiology of Disease,2018,109:88−101. doi: 10.1016/j.nbd.2017.10.003
    [19]
    AMIRI B, HOSSEINI N S, TAKTAZ F, et al. Inhibitory effects of selected antibiotics on the activities of α-amylase and α-glucosidase: In-vitro, in-vivo and theoretical studies[J]. European Journal of Pharmaceutical Sciences,2019,138:105040. doi: 10.1016/j.ejps.2019.105040
    [20]
    DONATO M T, TOLOSA L, GÓMEZ-LECHÓN M J. Culture and functional characterization of human hepatoma HepG2 cells[J]. Methods in molecular biology,2015,1250:77−93.
    [21]
    LI Y M, SUN M Z, LIU Y P, et al. Gymnemic acid alleviates type 2 diabetes mellitus and suppresses endoplasmic reticulum stress in vivo and in vitro[J]. Journal of Agricultural and Food Chemistry,2019,67(13):3662−3669. doi: 10.1021/acs.jafc.9b00431
    [22]
    孟煜嘉, 徐逸凡, 王艳妮, 等. 微波及超声法提取苦丁茶中熊果酸的对比研究[J]. 机电信息,2017(17):36−42. [MENG Y J, XU Y F, WANG Y N, et al. Comparison of microwave and ultrasonic extraction of ursolic acid from leaf of Chinese holly[J]. Mechanical and Electrical Information,2017(17):36−42. doi: 10.3969/j.issn.1671-0797.2017.17.009
    [23]
    侯敏娜, 侯少平, 刘艳红, 等. 响应面法优化超声辅助提取浙贝母蒽醌工艺及其抑菌活性研究[J]. 江西农业学报,2020,32(10):81−86. [HOU M N, HOU S P, LIU Y H, et al. Optimization of ultrasonic assisted extraction of quinone from Fritillaria thunbergii by response surface methodology and its antibacterial activity[J]. Acta Agriculturae Jiangxi,2020,32(10):81−86.
    [24]
    高洁, 王勇, 张泉荣, 等. 大黄总蒽醌超声辅助提取工艺优化及抑菌活性研究[J]. 化学与生物工程,2019,36(4):24−27. [GAO J, WANG Y, ZHANG Q R, et al. Optimization in ultrasonic-assisted extraction process of total anthraquinone from Radix et Rhizoma Rhei and its antibacterial activity[J]. Chemistry & Bioengineering,2019,36(4):24−27. doi: 10.3969/j.issn.1672-5425.2019.04.006
    [25]
    刘媛洁, 张良, 等. 响应面法优化复合酶辅助超声波提取柚子皮总黄酮工艺[J]. 食品工业科技,2019,40(23):143−150. [LIU Y J, ZHANG L. Optimization of enzymatic assisted ultrasonic extraction of total flavonoids from grapefruit peel by response surface methodology[J]. Science and Technology of Food Industry,2019,40(23):143−150.
    [26]
    MEHMET Ü, IŞIL I G, ERSIN Ü, et al. Optimisation of biomass catalytic depolymerisation conditions by using response surface methodology[J]. Waste Management & Research,2020,38(3):322−331.
    [27]
    崔瀚元, 宋兆伟, 张越, 等. 响应面法优化决明子总蒽醌的超声辅助提取工艺研究[J]. 食品研究与开发,2019,40(21):126−131. [CUI H Y, SONG Z W, ZHANG Y, et al. Optimization of ultrasonic assist extracting anthraquinone from Semen cassia by response surface methood[J]. Food Research and Development,2019,40(21):126−131.
    [28]
    LI Y, JIANG J G. Health functions and structure-activity relationships of natural anthraquinones from plants[J]. Food & Function,2018,9(12):6064−6081.
    [29]
    PONGNARAVANE B, GOTO M, SASAKI M, et al. Extraction of anthraquinones from roots of Morinda citrifolia by pressurized hot water: Antioxidant activity of extracts[J]. Journal of Supercritical Fluids,2006,37(3):390−396. doi: 10.1016/j.supflu.2005.12.013
    [30]
    WATTS J L, RISTOW M. Lipid and carbohydrate metabolism in Caenorhabditis elegans[J]. Genetics,2017,207(2):413−446.
    [31]
    LUO S Y, JIANG X L, JIA L P, et al. In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on Caenorhabditis elegans[J]. Molecules,2019,24(4):704. doi: 10.3390/molecules24040704
    [32]
    WANG B H, CAO J J, ZHANG B, et al. Structural characterization, physicochemical properties and alpha-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple[J]. Carbohydrate Polymers,2019,211:227−236. doi: 10.1016/j.carbpol.2019.02.006
    [33]
    曾铁鑫, 姚志仁, 李豫, 等. 巴戟天不同极性萃取相的抗氧化及降血糖活性[J]. 食品与发酵工业,2020,46(19):192−196. [ZENG T X, YAO Z R, LI Y, et al. Antioxidant and hypoglycemic activities of different parts partitioned from the ethanol extract of Morinda officinalis How[J]. Food and Fermentation Industries,2020,46(19):192−196.
    [34]
    梁宗瑶, 魏园园, 任维维, 等. 橡子仁萃取物成分分析及对α-淀粉酶、α-葡萄糖苷酶的抑制作用[J]. 食品工业科技,2021,42(17):47−55. [LIANG Z Y, WEI Y Y, REN W W, et al. Composition analysis and inhibitory effect against α-amylase and α-glucosidase of acorn kernel extractions[J]. Science and Technology of Food Industry,2021,42(17):47−55.
    [35]
    LIN C L, HUANG H C, LIN J K. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells[J]. Journal of Lipid Research,2007,48(11):2334−2343. doi: 10.1194/jlr.M700128-JLR200
    [36]
    GAO Q, QIN W S, JIA Z H, et al. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy[J]. Planta Medica,2010,76(1):27−33. doi: 10.1055/s-0029-1185948
    [37]
    JAMES D E, BROWN R, NAVARRO J, et al. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein[J]. Nature,1988,333(6169):183−185. doi: 10.1038/333183a0
  • Cited by

    Periodical cited type(2)

    1. 赵志程,赵巍,张爱霞,刘敬科,生庆海,李朋亮. 脂质热解形成的挥发性成分及途径研究进展. 粮食与油脂. 2024(08): 12-18 .
    2. 刘颖,黄小波. 食品中活泼羰基化合物研究进展. 中外食品工业. 2024(11): 43-45 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (353) PDF downloads (32) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return