Citation: | PENG Dong, LUO Zhifeng, TAO Qian, et al. Extraction of Anthraquinone from Fermented Morinda officinalis and Its Antioxidant and Hypoglycemic Activities[J]. Science and Technology of Food Industry, 2022, 43(7): 214−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080091. |
[1] |
LIAO Z Z, ZHANG J Y, LIU B, et al. Polysaccharide from okra(Abelmoschus esculentus(L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model[J]. Molecules,2019,24(10):1906. doi: 10.3390/molecules24101906
|
[2] |
ORME C M, BOGAN J S. Sorting out diabetes[J]. Science,2009,324(5931):1155−1156. doi: 10.1126/science.1174841
|
[3] |
POTIPIRANUN T, ADISAKWATTANA S, WORAWALAI W, et al. Identification of pinocembrin as an anti-glycation agent and -glucosidase inhibitor from fingerroot(Boesenbergia rotunda): The tentative structure-activity relationship towards MG-trapping activity[J]. Molecules,2018,23(12):3365. doi: 10.3390/molecules23123365
|
[4] |
杨小倩, 孙佳明, 吴楠, 等. 玉蜀黍不同部位提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用[J]. 食品工业科技,2021,42(1):15−21, 27. [YANG X Q, SUN J M, WU N, et al. Inhibitory effects of extracts from different parts of maize on α-glucosidase and α-amylase[J]. Science and Technology of Food Industry,2021,42(1):15−21, 27.
|
[5] |
CHAI W F, TANG K S. Protective potential of cerium oxide nanoparticles in diabetes mellitus[J]. Journal of Trace Elements in Medicine and Biology,2021,66:126742. doi: 10.1016/j.jtemb.2021.126742
|
[6] |
WU Z Q, CHEN D L, LIN F H, et al. Effect of bajijiasu isolated from Morinda officinalis F. C. how on sexual function in male mice and its antioxidant protection of human sperm[J]. Journal of Ethnopharmacology,2015,164:283−292. doi: 10.1016/j.jep.2015.02.016
|
[7] |
ZHANG J H, XIN H L, XU Y M, et al. Morinda officinalis How. – A comprehensive review of traditional uses, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,213:230−255. doi: 10.1016/j.jep.2017.10.028
|
[8] |
LUO H, WANG Y, QIN Q Y, et al. Anti-inflammatory naphthoates and anthraquinones from the roots of Morinda officinalis[J]. Bioorganic Chemistry,2021,110:104800. doi: 10.1016/j.bioorg.2021.104800
|
[9] |
WANG J H, XU S Q, MEI Y, et al. A high-quality genome assembly of Morinda officinalis, a famous native southern herb in the Lingnan region of southern China[J]. Horticulture Research,2021,8(1):135−135. doi: 10.1038/s41438-021-00551-w
|
[10] |
SONG B, WANG F J, WANG W. Effect of aqueous extract from Morinda officinalis F. C. How on microwave-induced hypothalamic-pituitary-testis axis impairment in male sprague-dawley rats[J]. Evidence-based Complementary and Alternative Medicine,2015,2015:360730.
|
[11] |
ZHANG S N, YI W N, WANG Z H, et al. Ultrahigh pressure extraction of polysaccharide from Morinda officinalis and effect on the polysaccharide structure[J]. Separation Science and Technology,2021,56(10):1741−1751. doi: 10.1080/01496395.2020.1794896
|
[12] |
PHUONG A V T, VO V M, CHAU T V, et al. Iridoids and anthraquinones from the roots of Morinda officinalis[J]. Vietnam Journal of Chemistry,2021,59(1):27−31.
|
[13] |
谭丽容, 代文豪, 罗志锋, 等. 不同菌种发酵对巴戟天活性成分含量的影响[J]. 中国酿造,2018,37(12):121−125. [TAN L R, DAI W H, LUO Z F, et al. Effect of fermentaion with different strains on active componets content in Morinda officinalis How[J]. China Brewing,2018,37(12):121−125. doi: 10.11882/j.issn.0254-5071.2018.12.024
|
[14] |
LI P, TIAN W N, ZHUO J, et al. Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt[J]. Frontiers in Microbiology,2018,9:2216. doi: 10.3389/fmicb.2018.02216
|
[15] |
YU G Y, ZHAO J, WEI Y L, et al. Physicochemical properties and antioxidant activity of pumpkin polysaccharide(Cucurbita moschata Duchesne ex Poiret) modified by subcritical water[J]. Foods,2021,10(1):197. doi: 10.3390/foods10010197
|
[16] |
SMIRNOFF N, CUMBES Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Pergamon,1989,28(4):1057−1060.
|
[17] |
TANG Q L, HUANG G L. Preparation and antioxidant activities of cuaurbit polysaccharide[J]. International Journal of Biological Macromolecules,2018,117:362−365. doi: 10.1016/j.ijbiomac.2018.05.213
|
[18] |
WANG C Y, SAAR V, LEUNG K L, et al. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans[J]. Neurobiology of Disease,2018,109:88−101. doi: 10.1016/j.nbd.2017.10.003
|
[19] |
AMIRI B, HOSSEINI N S, TAKTAZ F, et al. Inhibitory effects of selected antibiotics on the activities of α-amylase and α-glucosidase: In-vitro, in-vivo and theoretical studies[J]. European Journal of Pharmaceutical Sciences,2019,138:105040. doi: 10.1016/j.ejps.2019.105040
|
[20] |
DONATO M T, TOLOSA L, GÓMEZ-LECHÓN M J. Culture and functional characterization of human hepatoma HepG2 cells[J]. Methods in molecular biology,2015,1250:77−93.
|
[21] |
LI Y M, SUN M Z, LIU Y P, et al. Gymnemic acid alleviates type 2 diabetes mellitus and suppresses endoplasmic reticulum stress in vivo and in vitro[J]. Journal of Agricultural and Food Chemistry,2019,67(13):3662−3669. doi: 10.1021/acs.jafc.9b00431
|
[22] |
孟煜嘉, 徐逸凡, 王艳妮, 等. 微波及超声法提取苦丁茶中熊果酸的对比研究[J]. 机电信息,2017(17):36−42. [MENG Y J, XU Y F, WANG Y N, et al. Comparison of microwave and ultrasonic extraction of ursolic acid from leaf of Chinese holly[J]. Mechanical and Electrical Information,2017(17):36−42. doi: 10.3969/j.issn.1671-0797.2017.17.009
|
[23] |
侯敏娜, 侯少平, 刘艳红, 等. 响应面法优化超声辅助提取浙贝母蒽醌工艺及其抑菌活性研究[J]. 江西农业学报,2020,32(10):81−86. [HOU M N, HOU S P, LIU Y H, et al. Optimization of ultrasonic assisted extraction of quinone from Fritillaria thunbergii by response surface methodology and its antibacterial activity[J]. Acta Agriculturae Jiangxi,2020,32(10):81−86.
|
[24] |
高洁, 王勇, 张泉荣, 等. 大黄总蒽醌超声辅助提取工艺优化及抑菌活性研究[J]. 化学与生物工程,2019,36(4):24−27. [GAO J, WANG Y, ZHANG Q R, et al. Optimization in ultrasonic-assisted extraction process of total anthraquinone from Radix et Rhizoma Rhei and its antibacterial activity[J]. Chemistry & Bioengineering,2019,36(4):24−27. doi: 10.3969/j.issn.1672-5425.2019.04.006
|
[25] |
刘媛洁, 张良, 等. 响应面法优化复合酶辅助超声波提取柚子皮总黄酮工艺[J]. 食品工业科技,2019,40(23):143−150. [LIU Y J, ZHANG L. Optimization of enzymatic assisted ultrasonic extraction of total flavonoids from grapefruit peel by response surface methodology[J]. Science and Technology of Food Industry,2019,40(23):143−150.
|
[26] |
MEHMET Ü, IŞIL I G, ERSIN Ü, et al. Optimisation of biomass catalytic depolymerisation conditions by using response surface methodology[J]. Waste Management & Research,2020,38(3):322−331.
|
[27] |
崔瀚元, 宋兆伟, 张越, 等. 响应面法优化决明子总蒽醌的超声辅助提取工艺研究[J]. 食品研究与开发,2019,40(21):126−131. [CUI H Y, SONG Z W, ZHANG Y, et al. Optimization of ultrasonic assist extracting anthraquinone from Semen cassia by response surface methood[J]. Food Research and Development,2019,40(21):126−131.
|
[28] |
LI Y, JIANG J G. Health functions and structure-activity relationships of natural anthraquinones from plants[J]. Food & Function,2018,9(12):6064−6081.
|
[29] |
PONGNARAVANE B, GOTO M, SASAKI M, et al. Extraction of anthraquinones from roots of Morinda citrifolia by pressurized hot water: Antioxidant activity of extracts[J]. Journal of Supercritical Fluids,2006,37(3):390−396. doi: 10.1016/j.supflu.2005.12.013
|
[30] |
WATTS J L, RISTOW M. Lipid and carbohydrate metabolism in Caenorhabditis elegans[J]. Genetics,2017,207(2):413−446.
|
[31] |
LUO S Y, JIANG X L, JIA L P, et al. In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on Caenorhabditis elegans[J]. Molecules,2019,24(4):704. doi: 10.3390/molecules24040704
|
[32] |
WANG B H, CAO J J, ZHANG B, et al. Structural characterization, physicochemical properties and alpha-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple[J]. Carbohydrate Polymers,2019,211:227−236. doi: 10.1016/j.carbpol.2019.02.006
|
[33] |
曾铁鑫, 姚志仁, 李豫, 等. 巴戟天不同极性萃取相的抗氧化及降血糖活性[J]. 食品与发酵工业,2020,46(19):192−196. [ZENG T X, YAO Z R, LI Y, et al. Antioxidant and hypoglycemic activities of different parts partitioned from the ethanol extract of Morinda officinalis How[J]. Food and Fermentation Industries,2020,46(19):192−196.
|
[34] |
梁宗瑶, 魏园园, 任维维, 等. 橡子仁萃取物成分分析及对α-淀粉酶、α-葡萄糖苷酶的抑制作用[J]. 食品工业科技,2021,42(17):47−55. [LIANG Z Y, WEI Y Y, REN W W, et al. Composition analysis and inhibitory effect against α-amylase and α-glucosidase of acorn kernel extractions[J]. Science and Technology of Food Industry,2021,42(17):47−55.
|
[35] |
LIN C L, HUANG H C, LIN J K. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells[J]. Journal of Lipid Research,2007,48(11):2334−2343. doi: 10.1194/jlr.M700128-JLR200
|
[36] |
GAO Q, QIN W S, JIA Z H, et al. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy[J]. Planta Medica,2010,76(1):27−33. doi: 10.1055/s-0029-1185948
|
[37] |
JAMES D E, BROWN R, NAVARRO J, et al. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein[J]. Nature,1988,333(6169):183−185. doi: 10.1038/333183a0
|
1. |
赵志程,赵巍,张爱霞,刘敬科,生庆海,李朋亮. 脂质热解形成的挥发性成分及途径研究进展. 粮食与油脂. 2024(08): 12-18 .
![]() | |
2. |
刘颖,黄小波. 食品中活泼羰基化合物研究进展. 中外食品工业. 2024(11): 43-45 .
![]() |