WEI Ailing, ZENG Bin, ZHOU Qiang, et al. Study on Chemical Constituents, Antioxidant and Wound Healing Promoting Activities of Pilose Antler Waste[J]. Science and Technology of Food Industry, 2022, 43(8): 372−381. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080016.
Citation: WEI Ailing, ZENG Bin, ZHOU Qiang, et al. Study on Chemical Constituents, Antioxidant and Wound Healing Promoting Activities of Pilose Antler Waste[J]. Science and Technology of Food Industry, 2022, 43(8): 372−381. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080016.

Study on Chemical Constituents, Antioxidant and Wound Healing Promoting Activities of Pilose Antler Waste

More Information
  • Received Date: August 02, 2021
  • Available Online: February 18, 2022
  • In order to give better play to the reuse value of pilose antler waste, the chemical components and pharmacological activities of the waste were studied. Pilose antler medicinal materials were treated according to the production process of pilose antler oral liquid standard (Ministry of Health Standard: WS3-B-2232-96). Then the waste produced in the production of pilose antler oral liquid was reextracted by water extraction and alcohol precipitation. Ultrahigh performance liquid chromatography quadrupole electrostatic field orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS), bicinchoninic acid (BCA) and phenol-sulfuric acid methods were used to study the chemical components of the extract. The antioxidant capacity of the extract was evaluated by three ways including free radical scavenging test of 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH), 2,2-diazo-bis (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt (ABTS) and Ferric ion reducing antioxidant power (FRAP). Moreover, the antioxidant activity was further verified by hydrogen peroxide and glutamate cell oxidative damage model. The skin injury repairing activity of the extract was proved via mouse skin trauma model. The results showed that via water extraction and alcohol precipitation, the supernatant contained oligosaccharides, amino acids, nucleosides and other substances. The lower precipitation part was mainly protein polypeptide and polysaccharide, and the sum of the two was more than 70%. The antioxidant results showed that after water extraction and alcohol precipitation treatment, the two supernatant parts of the waste produced by oral liquid showed better antioxidant activity. Among them, the antioxidant effect of the supernatant part of pilose antler drug residue after water extraction and alcohol precipitation treatment was better, and the IC50 of DPPH and ABTS+ free radical scavenging rates were 0.82 and 2.52 mg/mL respectively, FRAP results also confirmed this, and when the concentration was 0.1 mg/mL, it could significantly (P<0.05) improve the cell survival rate of hydrogen peroxide and glutamate oxidative damage model group (more than 10%). Although the precipitated parts of the two wastes after treatment did not show good antioxidant activity, they showed good activity in subsequent skin repair experiments. Both precipitated parts showed good wound repair activity at 0.010 g/mL (P<0.05), while the two supernatants did not show wound repair activity. In summary, the protein, polysaccharide and other substances could be obtained from the waste produced during the production of pilose antler oral liquid after extraction, which had good antioxidant and wound repair activities, had the value of further research and utilization, and would successfully develop functional foods.
  • [1]
    国家药典委员会. 中国药典[S]. 一部. 北京: 中国医药科技出版社, 2020.

    National Pharmacopoeia Committee. Pharmacopoeia[S]. I. Beijing: China Medical Science Press, 2020.
    [2]
    JEON B, KIM S, LEE S, et al. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon)[J]. Mammalian Biology-Zeitschrift Für Sä ugetierkunde,2009,74(5):374−380.
    [3]
    ZHANG H, SUN J, NIU X, et al. Simultaneous quantification and splenocyte-proliferating activities of nucleosides and bases in Cervi cornu pantotrichum[J]. Pharmacognosy Magazine,2014,10(40):391−397. doi: 10.4103/0973-1296.141757
    [4]
    ALEKSANDRA GIŻEJEWSKA, NAWROCKA A, JÓZEF SZKO DA, et al. Variations of selected trace element contents in two layers of red deer antlers[J]. Journal of Veterinary Research,2016,60(4):467−471. doi: 10.1515/jvetres-2016-0069
    [5]
    LU C, WANG M, MU J, et al. Simultaneous determination of eighteen steroid hormones in antler velvet by gas chromatography-tandem mass spectrometry[J]. Food Chemistry,2013,141(3):1796−1806. doi: 10.1016/j.foodchem.2013.04.104
    [6]
    ZANG Z J, TANG H F, TUO Y, et al. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice[J]. Asian Journal of Andrology,2016,18(4):613−619. doi: 10.4103/1008-682X.166435
    [7]
    何刚, 王本祥, 张伟, 等. 鹿茸多肽对雄鼠黄体生成素和睾丸酮分泌的影响[J]. 中成药,1994(11):33−34. [HE G, WANG B X, ZHANG W, et al. Effects of pilose antler polypeptides on secretion of luteinizing hormone and testosterone in male mice[J]. Chinese Traditional Patent Medicine,1994(11):33−34.
    [8]
    WANG Y, LUO S, ZHANG D, et al. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways[J]. Pharmaceutical Biology,2017,55(1):2196−2204. doi: 10.1080/13880209.2017.1397177
    [9]
    LIU G, CHAO M, WANG P, et al. Pilose antler peptide potentiates osteoblast differentiation and inhibits osteoclastogenesis via manipulating the NF-κB pathway[J]. Biochem Biophys Res Commun,2017,491(2):388−395. doi: 10.1016/j.bbrc.2017.07.091
    [10]
    LI S P, HE J X. Pilose antler polypeptide protects against sevoflurane-mediated neurocyte injury[J]. Molecular Medicine Reports,2018,18(6):5353−5360.
    [11]
    WANG C T. Antioxidant activity of protein hydrolysates from aqueous extract of velvet antler (Cervus elaphus) as influenced by molecular weight and enzymes[J]. Natural Product Communications,2011,6(11):1683−1688.
    [12]
    胡太超, 刘玉敏, 陶荣珊, 等. 鹿茸多肽的抗疲劳作用机制研究[J]. 吉林农业大学学报,2015,37(4):469−476. [HU T C, LIU Y M, TAO R S, et al. Study on antifatigue mechanism of pilose antler polypeptides[J]. Journal of Jilin Agricultural University,2015,37(4):469−476.
    [13]
    翁梁, 周秋丽, 王丽娟, 等. 鹿茸多肽促进表皮和成纤维细胞增殖及皮肤创伤愈合[J]. 药学学报,2001(11):817−820. [WENG L, ZHOU Q L, WANG L J, et al. Velevt antler polypeptides promoted proliferation of epidermic cells and fibroblasts and skin wound healing[J]. Acta Pharmaceutica Sinica,2001(11):817−820. doi: 10.3321/j.issn:0513-4870.2001.11.004
    [14]
    ZHANG E H, GAO S Y, PI Y Z, et al. Wound healing by a 3.2 kDa recombinant polypeptide from velvet antler of Cervus nippon Temminck[J]. Biotechnology Letters,2012,34(4):789−793. doi: 10.1007/s10529-011-0829-8
    [15]
    ZHANG E H, LI X X, LI D D, et al. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck[J]. International Immunopharmacology,2013,16(2):210−213. doi: 10.1016/j.intimp.2013.02.027
    [16]
    张争明, 杨静, 林伟欣. 鹿源药材保健食品研发现状与方向[J]. 经济动物学报,2016,20(4):212−218. [ZHANG Z M, YANG J, LIN W X. Present situation and development trend of health food using deer products as raw materials[J]. Journal of Economic Animal,2016,20(4):212−218.
    [17]
    刘磊. 3种复配中药药渣专用复合菌剂发酵条件的优化及效果[J]. 饲料研究,2021,44(8):88−91. [LIU L. Optimization of fermentation conditions andeffect of compound bacterial agent for Chinese medicine residue[J]. Feed Research,2021,44(8):88−91.
    [18]
    蔡良, 欧阳冬青, 施华蓉, 等. 不同中药配方颗粒药渣栽培灵芝研究[J]. 福建农业科技,2020(9):39−44. [CAI L, OU YANG D Q, SHI H R, et al. Study on the cultivation of Ganoderma lucidum with different Chinese medicine granule residues[J]. Fujian Agricultural Science and Technology,2020(9):39−44.
    [19]
    李婷. 红花注射液药渣中亚精胺有效部位提取物抗抑郁作用研究[D]. 太原: 山西大学, 2020.

    LI T. Antidepressant effects of coumaroylspermidine extract from safflower injection dregs[D]. Taiyuan: Shanxi University, 2020.
    [20]
    李娟, 李敏. 可持续设计理念的中药药渣堆肥产品设计研究[J]. 工业设计,2019(12):50−51. [LI J, LI M. The research on designing Chinese medicine residue compost product based on sustainability concept[J]. Industrial Design,2019(12):50−51.
    [21]
    贺超, 王文全, 侯俊玲. 中药药渣生物有机肥的研究进展[J]. 中草药,2017,48(24):5286−5292. [HE C, WANG W Q, HOU J L. Research progress on bio-organic fertilizer from Chinese material medica residues[J]. Chinese Traditional and Herbal Drugs,2017,48(24):5286−5292. doi: 10.7501/j.issn.0253-2670.2017.24.035
    [22]
    王婷, 王潇, 李佳鑫, 等. 美洲大蠊药渣中多糖制备工艺优化及促创面愈合的综合利用研究[J]. 中草药,2019,50(10):2339−2346. [WANG T, WANG X, LI J X, et al. Optimization of polysaccharide preparation and comprehensive utilization of wound healing in residue of Periplaneta americana[J]. Chinese Traditional and Herbal Drugs,2019,50(10):2339−2346. doi: 10.7501/j.issn.0253-2670.2019.10.013
    [23]
    朱景贞. 鹿茸渣中蛋白质的酸水解方法和水解液中氨基酸的种类[J]. 中药通报,1986(4):44−45. [ZHU J Z. Acidic hydrolysis of proteins in pilose antler residue and types of amino acids in hydrolysate[J]. China Journal of Chinese Materia Medica,1986(4):44−45.
    [24]
    樊绘曾, 邢蕊凝. 鹿茸酸性多糖的分离和鉴定[J]. 中草药通讯,1979,10(5):6−9,49. [FAN H Z, XIN X N. Isolation and identification of acid polysaccharides from deer antler[J]. Chinese Traditional and Herbal Drugs,1979,10(5):6−9,49.
    [25]
    王文平, 郭祀远, 李琳, 等. 苯酚-硫酸法测定野木瓜中多糖含量的研究[J]. 食品科学,2007(4):276−279. [WANG W P, GUO S Y, LI L, et al. Assay study on content of polysaccharides in Stanuntonia chinensis by phenol-sulfuric acid method[J]. Food Science,2007(4):276−279. doi: 10.3321/j.issn:1002-6630.2007.04.065
    [26]
    DENG H, WANG H, LIANG M, et al. A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water[J]. Microchemical Journal,2019,151:104250−104250. doi: 10.1016/j.microc.2019.104250
    [27]
    BLOIS M S. Antioxidant determinations by the use of a stable free radical[J]. Nature,1958,181(4617):1190−1200. doi: 10.1038/1811190a0
    [28]
    DRINI Z, MUDRI J, ZDUNI G, et al. Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil[J]. Food Chemistry,2020,333:127501. doi: 10.1016/j.foodchem.2020.127501
    [29]
    朱萱萱, 刘晓谦, 梁曜华, 等. 金樱根提取物不同极性部位的体外抗氧化活性考察及其化学成分分析[J]. 中国实验方剂学杂志,2021,27(8):117−125. [ZHU X X, LIU X Q, LIANG Y H, et al. Investigation on in vitro antioxidant activity and chemical composition of different polar parts of extract of Rosa cymosa root[J]. Chinese Journal of Experimental Traditional Medical Formulae,2021,27(8):117−125.
    [30]
    BENZIE I, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay[J]. Analytical Biochemistry,1996,239(1):70−76. doi: 10.1006/abio.1996.0292
    [31]
    王振宇, 杨斯月, 吕维, 等. 利用3种不同化学计量学方法分析枸杞子抗氧化部位的谱效关系[J]. 中国中药杂志,2021,46(13):3377−3387. [WANG Z N, YANG S Y, LYU W, et al. Analysis of spectrum-activity relationship among different antioxidant parts of Lycii fructus using three chemometrics[J]. China Journal of Chinese Materia Medica,2021,46(13):3377−3387.
    [32]
    郭昊. 石榴提取物对角质形成细胞抗氧化、抗糖化、抗炎作用和Paget病研究[D]. 沈阳: 中国医科大学, 2020.

    GUO H. Biological evaluations of antioxidative, anti-glycation, and anti-inflammatory effects of pomegranate extract in keratinocytes, and the study of Paget’s disease[D]. Shenyang: China Medical University, 2020.
    [33]
    韩富亮, 袁春龙, 郭安鹊, 等. 二喹啉甲酸法(BCA)分析蛋白多肽的原理、影响因素和优点[J]. 食品与发酵工业,2014,40(11):202−207. [HAN F L, YUAN C L, GUO A Q, et al. The principle, influence factors and advantages of bicinchoninic acid method (BCA) for protein and peptide assay[J]. Food and Fermentation Industries,2014,40(11):202−207.
    [34]
    马铭, 白瑞斌, 刘景龙, 等. 3种党参提取物体外抗氧化活性探究[J]. 中成药,2020,42(9):2514−2517. [MA M, BAI R B, LIU J L, et al. Research on antioxidant activity of three kinds of Codonopsis pilosula[J]. Chinese Traditional Patent Medicine,2020,42(9):2514−2517. doi: 10.3969/j.issn.1001-1528.2020.09.050
    [35]
    马骏, 张磊, 史隽, 等. 5’-单磷酸腺苷在水和乙醇/水体系中的溶解度模型[J]. 生物加工过程,2007(2):61−66. [MA J, ZHANG L, SHI J, et al. Crystallization the rmodynamic of adenosine 5’-monophosphate in water and ethanol[J]. Chinese Journal of Bioprocess Engineering,2007(2):61−66. doi: 10.3969/j.issn.1672-3678.2007.02.012
    [36]
    赵鑫, 陈思, 王毅, 等. 鹿茸蛋白提取物对帕金森模型秀丽隐杆线虫毒性作用与药理作用的研究[J]. 环球中医药,2020,13(8):1316−1322. [ZHAO X, CHEN S, WANG Y, et al. Study on the toxicity and pharmacological effects of pilose antler protein extract on Caenorhabditis elegans of Parkinson’s model[J]. Global Traditional Chinese Medicine,2020,13(8):1316−1322. doi: 10.3969/j.issn.1674-1749.2020.08.005
    [37]
    王亮, 张林凡, 何玉琼, 等. 动物药中氨基酸药理活性及含量研究概况[J]. 亚太传统医药,2021,17(2):165−169. [WANG L, ZHANG L F, HE Y Q, et al. Study on the pharmacological activity and content of amino acids in animal drugs[J]. Asia-Pacific Traditional Medicine,2021,17(2):165−169.
    [38]
    贾丽丽, 孙进, 乐国伟, 等. 低聚糖对乳酸菌抗氧化胁迫能力的影响[J]. 食品工业科技,2013,34(16):191−194,199. [JIA L L, SUN J, LE G W, et al. Influence of oligosaccharides on the antioxidant activities andtolerance capacity of Lactobacillus to oxidative stress[J]. Science and Technology of Food Industry,2013,34(16):191−194,199.
    [39]
    王海松. 微波固相合成葡—半乳低聚糖及其抗氧化和免疫活性研究[D]. 无锡: 江南大学, 2008.

    WANG H S. The effect of glucogalactane synthesized by microwave irradiation on the anti-oxidation and immunity in mice[D]. Wuxi: Jiangnan University, 2008.
    [40]
    董蕊, 郑毅男. 蜂蜜中氨基酸含量对抗氧化能力的影响[J]. 食品科学,2011,32(21):66−70. [DONG X, ZHEN Y N. Effects of amino acid content on antioxidant activity of honey from different sources and geographic origins[J]. Food Science,2011,32(21):66−70.
    [41]
    苗新, 曹娟娟, 徐玮, 等. 核苷酸对大黄鱼生长性能、肠道形态和抗氧化能力的影响[J]. 水产学报,2014,38(8):1140−1148. [MIAO X, CAO J J, XU W, et al. Effects of dietary nucleotides on growth performance, intestinal morphology and anti-oxidative capacities of large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China,2014,38(8):1140−1148.
  • Cited by

    Periodical cited type(14)

    1. 党亚锋,聂旭莲,张立君,贺博,祁珊珊,郑红星. 富硒油菜蜂花粉压片糖果的制备工艺. 食品工业. 2025(04): 64-68 .
    2. 黄运安,郭艳红,杨秀立. Box-Behnken响应面法优化地参咀嚼片辅料配比工艺. 现代食品. 2024(03): 78-83+88 .
    3. 刘佳丽,张石蕾,胡君萍,王郑园,李明杰,杨建华. 肉苁蓉复方咀嚼片制备工艺及质量控制的研究. 西北药学杂志. 2024(02): 99-106 .
    4. 董轲. 一种制备包含不同粒径麦芽糖醇的压片糖果的方法. 现代食品. 2024(06): 138-141 .
    5. 杨继敏,王宪文,王新明,肖林. 克弗尔压片糖果工艺研究. 中国果菜. 2024(08): 20-24+31 .
    6. 邓刚,梁可文,蒋婳影. 多指标综合评分法结合Box-Behnken响应面法优选栀子茯苓压片糖果的提取工艺. 化工科技. 2024(03): 40-45 .
    7. 秦佳,胡亚卓,张霖卉,姚嘉琳,王永霞,田玲丽,刘敦华. 枸杞-茯苓多糖复合咀嚼片的制备及其特性的研究. 中国食品添加剂. 2024(12): 120-130 .
    8. 覃琳茵,卢玉翠,杨子凡,廖夏云,赵立春. 马齿苋压片糖果制备工艺. 食品工业. 2024(12): 37-41 .
    9. 解双瑜,景秋菊,王志伟,孙波,苏云珊,周宇. 沙棘益生菌压片糖果的制备及储藏稳定性研究. 食品工业. 2023(01): 16-21 .
    10. 陈瑜杰,曹硕,乔青青. 对于固体饮料、压片糖果及代用茶等食品生产的风险防控要点反思. 食品安全导刊. 2023(25): 4-6 .
    11. 李文璇,怀欲晓,唐百川,陈春雷,卢晓明. 模糊数学评价结合响应面法优化黑蒜压片糖果配方工艺. 食品工业. 2023(10): 23-29 .
    12. 蒋丽,张文慧,朱慧莉. 刺梨压片糖果白色包衣的优化工艺研究. 现代食品. 2023(20): 119-123 .
    13. 王华,陈婵,刘虹虹,何姗珊,罗达龙. Captiva EMR-Lipid技术结合UPLC-Q-TOF/MS测定压片糖果中非法添加的美托拉宗. 中国药师. 2023(11): 355-360 .
    14. 刘佳梦,王梓涵,林丽静,廖雪汝,陈冲,刘义军,夏秋瑜. 龙眼超微粉含片的配方优化及品质评价. 食品研究与开发. 2022(21): 99-107 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (277) PDF downloads (22) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return