Citation: | LI Jiaxin, LI Daoliang, ZHOU Hongyuan, et al. Interaction Mechanism between Alternaria mycotoxins TeA and Serum Albumin by Fluorescence Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(8): 288−295. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080011. |
[1] |
AZCARATE M P, PATRIARCA A, TERMINIELLO L, et al. Alternaria toxins in wheat during the 2004 to 2005 argentinean harvest[J]. Journal of Food Protection,2008,71(6):1262−1265. doi: 10.4315/0362-028X-71.6.1262
|
[2] |
SIEGEL D, RASENKO T, KOCH M, et al. Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography-electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine[J]. Journal of Chromatography A,2009,1216(21):4582−4588. doi: 10.1016/j.chroma.2009.03.063
|
[3] |
SHI H, LI S, BAI Y, et al. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies[J]. Food Control,2018,91:202−215. doi: 10.1016/j.foodcont.2018.03.036
|
[4] |
HICKERT S, HERMES L, MAURIZ M L M, et al. Alternaria toxins in South African sunflower seeds: Cooperative study[J]. Mycotoxin Research,2017,33(4):309−321. doi: 10.1007/s12550-017-0290-1
|
[5] |
VAN P E, DESCHUYFFELEER N, JACXSENS L, et al. Screening of moulds and mycotoxins in tomatoes, bell peppers, onions, soft red fruits and derived tomato products[J]. Food Control,2014,37:165−170. doi: 10.1016/j.foodcont.2013.09.034
|
[6] |
LOPEZ P, VENEMA D, RIJK T, et al. Occurrence of Alternaria toxins in food products in the netherlands[J]. Food Control,2016,60:196−204. doi: 10.1016/j.foodcont.2015.07.032
|
[7] |
PRENDES L P, FONTANA A R, MERIN M G, et al. Natural occurrence and production of tenuazonic acid in wine grapes in argentina[J]. Food Science & Nutrition,2018,6(3):523−531.
|
[8] |
MAGNANI R F, DE S G D, RODRIGUES-FILHO E. Analysis of alternariol and alternariol monomethyl ether on flavedo and albedo tissues of tangerines (Citrus reticulata) with symptoms of Alternaria brown spot[J]. Journal of Agricultural and Food Chemistry,2007,55(13):4980−4986. doi: 10.1021/jf0704256
|
[9] |
CASTRO J C, AVINCOLA A S, ENDO E H, et al. Mycotoxigenic potential of Alternaria alternata isolated from dragon fruit (Hylocereus undatus Haw.) using UHPLC-QTOF-MS[J]. Postharvest Biology and Technology,2018,141:71−76. doi: 10.1016/j.postharvbio.2018.03.012
|
[10] |
WEI D, WANG Y, JIANG D, et al. Survey of Alternaria toxins and other mycotoxins in dried fruits in China[J]. Toxins,2017,9(7):200. doi: 10.3390/toxins9070200
|
[11] |
WANG Y, NIE J, YAN Z, et al. Occurrence and co-occurrence of mycotoxins in nuts and dried fruits from China[J]. Food Control,2018,88:181−189. doi: 10.1016/j.foodcont.2018.01.013
|
[12] |
GAMBACORTA L, EL D N, FAKHOURY R, et al. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialized in lebanon[J]. Food Control,2019,106:106724. doi: 10.1016/j.foodcont.2019.106724
|
[13] |
ASAM S, RYCHLIK M. Potential health hazards due to the occurrence of the mycotoxin tenuazonic acid in infant food[J]. European Food Research and Technology,2013,236(3):491−497. doi: 10.1007/s00217-012-1901-x
|
[14] |
XIAO Z, WANG Y, SHEN Y, et al. Specific monoclonal antibody-based enzyme immunoassay for sensitive and reliable detection of Alternaria mycotoxin iso-tenuazonic acid in food products[J]. Food Analytical Methods,2018,11(3):635−645. doi: 10.1007/s12161-017-1033-9
|
[15] |
SMITH E R, FREDRICKSON T N, HADIDIAN Z. Toxic effects of the sodium and the N,N'-dibenzylethylenediamine salts of tenuazonic acid (NSC-525816 and NSC-82260).[J]. Cancer Chemother Rep,1968,52(5):579−585.
|
[16] |
OSTRY V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs[J]. World Mycotoxin Journal,2008,1(2):175−188. doi: 10.3920/WMJ2008.x013
|
[17] |
ZHAO K, SHAO B, YANG D, et al. Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China[J]. Journal of Agricultural and Food Chemistry,2015,63(1):343−348. doi: 10.1021/jf5052738
|
[18] |
XU W, HAN X, LI F, et al. Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui province, China[J]. Toxins,2016,8(11):308. doi: 10.3390/toxins8110308
|
[19] |
蒋黎艳, 赵其阳, 龚蕾, 等. 超高效液相色谱串联质谱法快速检测柑橘中的5种链格孢霉毒素[J]. 分析化学,2015,43(12):1851−1858. [JIANG L Y, ZHAO Q Y, GONG L, et al. Rapid determination of five Alternaria mycotoxins in citru by ultra-high performance liquid chromatographytandem mass spectrometry[J]. Analytical Chemistry,2015,43(12):1851−1858. doi: 10.11895/j.issn.0253-3820.150370
|
[20] |
RYCHLIK M, LEPPER H, WEIDNER C, et al. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management[J]. Food Control,2016,68:181−185. doi: 10.1016/j.foodcont.2016.03.035
|
[21] |
JAHANBAN-ESFAHLAN A, OSTADRAHIMI A, JAHANBAN-ESFAHLAN R, et al. Recent developments in the detection of bovine serum albumin[J]. International Journal of Biological Macromolecules,2019:138.
|
[22] |
MORADI N, ASHRAFI-KOOSHK M R, CHAMANI J, ET AL. Separate and simultaneous binding of tamoxifen and estradiol to human serum albumin: Spectroscopic and molecular modeling investigations[J]. Journal of Molecular Liquids,2018,249:1083−1096. doi: 10.1016/j.molliq.2017.11.056
|
[23] |
VALENTINA S, CRISTINA F, NICOLA C, et al. Interaction of chlorogenic acids and quinides from coffee with human serum albumin[J]. Food Chemistry,2015,168:332−340. doi: 10.1016/j.foodchem.2014.07.080
|
[24] |
YAN J, WANG Q, PAN Q, et al. Assessment of the interaction between fraxinellone and bovine serum albumin by optical spectroscopy and molecular modeling methods[J]. Journal of Luminescence,2013,137:180−185. doi: 10.1016/j.jlumin.2012.12.036
|
[25] |
NUNES N M, COELHO P A F, PATINO A A J, et al. Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin: A thermodynamic approach[J]. Food Chemistry,2017,237:525−531. doi: 10.1016/j.foodchem.2017.05.131
|
[26] |
江涛. 四种重点黄曲霉毒素与人血清白蛋白的作用及机理研究[D]. 重庆: 西南大学, 2016.
JIANG T. The interaction mechanism between the four major aflatoxins and human albumin serum[D]. Chongqing: Southwest University, 2016.
|
[27] |
胡晶静. 碳量子点和纳米氧化铈与蛋白质的相互作用及机制研究[D]. 杭州: 浙江大学, 2020.
HU J J. Study on the interaction and corresponding mechanism of carbon quantum dots and nano ceria with proteins[D]. Hangzhou: Zhejiang University, 2020.
|
[28] |
TANG B, HUANG Y, MA X, et al. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity[J]. Food Chemistry,2016,212:434−442. doi: 10.1016/j.foodchem.2016.06.007
|
[29] |
SOOD D, KUMAR N, RATHEE G, et al. Mechanistic interaction study of bromo-noscapine with bovine serum albumin employing spectroscopic and chemoinformatics approaches[J]. Scientific Reports,2018:8.
|
[30] |
YUE Y, LIU J, LIU R, et al. Binding of helicid to human serum albumin: A hybrid spectroscopic approach and conformational study[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2014,124:46−51. doi: 10.1016/j.saa.2013.12.108
|
[31] |
刘璐. 糖皮质激素与牛血清白蛋白相互作用机制的研究: 代谢物、联用药物的影响[D]. 锦州: 渤海大学, 2021.
LIU L. Study on the mechanism of action between glucocorticoids and bovine serum albumin: Effects of metabolites and combination drugs[D]. Jinzhou: Bohai University, 2021.
|
[32] |
SUN Q, YANG H, TANG P, et al. Interactions of cinnamaldehyde and its metabolite cinnamic acid with human serum albumin and interference of other food additives[J]. Food Chemistry,2018,243:74−81. doi: 10.1016/j.foodchem.2017.09.109
|
[33] |
LI Y, YOU G, ZHEN Y, et al. Investigation of the interaction between patulin and human serum albumin by a spectroscopic method, atomic force microscopy, and molecular modeling[J]. Biomed Research International,2014,2014(10):734850.
|
[34] |
LI Y, WANG H, JIA B, et al. Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2013,30(2):356−364.
|
[35] |
KLOTZ I M. Physicochemical aspects of drug-protein interactions-general perspective[J]. Annals of the New York Academy of Sciences,1973,226(NOV26):18−35.
|
[36] |
ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions-forces contributing to stability[J]. Biochemistry,1981,20(11):3096−3102. doi: 10.1021/bi00514a017
|
[37] |
METI M D, BYADAGI K S, NANDIBEWOOR S T, et al. Multi-spectral characterization & effect of metal ions on the binding of bovine serum albumin upon interaction with a lincosamide antibiotic drug, clindamycin phosphate[J]. Journal of Photochemistry and Photobiology B-Biology,2014,138:324−330. doi: 10.1016/j.jphotobiol.2014.05.024
|
[38] |
DOHARE N, KHAN A B, MAURYA N, et al. An insight into the binding of aceclofenac with bovine serum albumin at physiological condition: A spectroscopic and computational approach[J]. Journal of Biomolecular Structure & Dynamics,2018,36(2):398−406.
|
[39] |
SHAGHAGHI M, DEHGHAN G, RASHTBARI S, et al. Multispectral and computational probing of the interactions between sitagliptin and serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,223:117286. doi: 10.1016/j.saa.2019.117286
|