LI Jiaxin, LI Daoliang, ZHOU Hongyuan, et al. Interaction Mechanism between Alternaria mycotoxins TeA and Serum Albumin by Fluorescence Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(8): 288−295. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080011.
Citation: LI Jiaxin, LI Daoliang, ZHOU Hongyuan, et al. Interaction Mechanism between Alternaria mycotoxins TeA and Serum Albumin by Fluorescence Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(8): 288−295. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080011.

Interaction Mechanism between Alternaria mycotoxins TeA and Serum Albumin by Fluorescence Spectroscopy

More Information
  • Received Date: August 02, 2021
  • Available Online: February 13, 2022
  • Alternaria mycotoxins, as a secondary metabolite produced by Alternaria species, widely contaminates fruits, vegetables and food crops and often enters the human food chain through multiple channels, causing food safety issues. In order to study the absorption, distribution, transport and metabolism of tenuazonic acid (TeA) in animals, steady state fluorescence spectrum, synchronous fluorescence spectrum, 3D fluorescence spectrum and circular dichrochromatic spectroscopy were used to determine the molecular interaction and mechanism between TeA and human serum albumin (HSA) and orbovine serum albumin (BSA). Results showed that: TeA displayed a static quenching effect on both types of serum albumin under the simulated blood physiological pH of 7.40 to form a stable non-fluorescent complex, the number of binding sites indicated that TeA and serum albumin combined data ratio of 1:1. Thermodynamic analysis demonstrated that the forces involved in the interaction between TeA and two serum albumins were mainly hydrophobic forces (ΔH>0, ΔS>0). 3D fluorescence and synchronous fluorescence results suggested that the combination of TeA changed the microenvironment polarity of the amino acid residues of serum albumin. Circular dichroism showed that the combination of TeA and serum albumin increased the content of α-helical structure in HSA and BSA. The binding of TeA to HAS and BSA could occur spontaneously and had a strong binding capacity to change the conformation of both serum albumin after binding. The results would lay a solid foundation for further studies such as exposure and metabolic dynamics of streptospore toxin in animals.
  • [1]
    AZCARATE M P, PATRIARCA A, TERMINIELLO L, et al. Alternaria toxins in wheat during the 2004 to 2005 argentinean harvest[J]. Journal of Food Protection,2008,71(6):1262−1265. doi: 10.4315/0362-028X-71.6.1262
    [2]
    SIEGEL D, RASENKO T, KOCH M, et al. Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography-electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine[J]. Journal of Chromatography A,2009,1216(21):4582−4588. doi: 10.1016/j.chroma.2009.03.063
    [3]
    SHI H, LI S, BAI Y, et al. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies[J]. Food Control,2018,91:202−215. doi: 10.1016/j.foodcont.2018.03.036
    [4]
    HICKERT S, HERMES L, MAURIZ M L M, et al. Alternaria toxins in South African sunflower seeds: Cooperative study[J]. Mycotoxin Research,2017,33(4):309−321. doi: 10.1007/s12550-017-0290-1
    [5]
    VAN P E, DESCHUYFFELEER N, JACXSENS L, et al. Screening of moulds and mycotoxins in tomatoes, bell peppers, onions, soft red fruits and derived tomato products[J]. Food Control,2014,37:165−170. doi: 10.1016/j.foodcont.2013.09.034
    [6]
    LOPEZ P, VENEMA D, RIJK T, et al. Occurrence of Alternaria toxins in food products in the netherlands[J]. Food Control,2016,60:196−204. doi: 10.1016/j.foodcont.2015.07.032
    [7]
    PRENDES L P, FONTANA A R, MERIN M G, et al. Natural occurrence and production of tenuazonic acid in wine grapes in argentina[J]. Food Science & Nutrition,2018,6(3):523−531.
    [8]
    MAGNANI R F, DE S G D, RODRIGUES-FILHO E. Analysis of alternariol and alternariol monomethyl ether on flavedo and albedo tissues of tangerines (Citrus reticulata) with symptoms of Alternaria brown spot[J]. Journal of Agricultural and Food Chemistry,2007,55(13):4980−4986. doi: 10.1021/jf0704256
    [9]
    CASTRO J C, AVINCOLA A S, ENDO E H, et al. Mycotoxigenic potential of Alternaria alternata isolated from dragon fruit (Hylocereus undatus Haw.) using UHPLC-QTOF-MS[J]. Postharvest Biology and Technology,2018,141:71−76. doi: 10.1016/j.postharvbio.2018.03.012
    [10]
    WEI D, WANG Y, JIANG D, et al. Survey of Alternaria toxins and other mycotoxins in dried fruits in China[J]. Toxins,2017,9(7):200. doi: 10.3390/toxins9070200
    [11]
    WANG Y, NIE J, YAN Z, et al. Occurrence and co-occurrence of mycotoxins in nuts and dried fruits from China[J]. Food Control,2018,88:181−189. doi: 10.1016/j.foodcont.2018.01.013
    [12]
    GAMBACORTA L, EL D N, FAKHOURY R, et al. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialized in lebanon[J]. Food Control,2019,106:106724. doi: 10.1016/j.foodcont.2019.106724
    [13]
    ASAM S, RYCHLIK M. Potential health hazards due to the occurrence of the mycotoxin tenuazonic acid in infant food[J]. European Food Research and Technology,2013,236(3):491−497. doi: 10.1007/s00217-012-1901-x
    [14]
    XIAO Z, WANG Y, SHEN Y, et al. Specific monoclonal antibody-based enzyme immunoassay for sensitive and reliable detection of Alternaria mycotoxin iso-tenuazonic acid in food products[J]. Food Analytical Methods,2018,11(3):635−645. doi: 10.1007/s12161-017-1033-9
    [15]
    SMITH E R, FREDRICKSON T N, HADIDIAN Z. Toxic effects of the sodium and the N,N'-dibenzylethylenediamine salts of tenuazonic acid (NSC-525816 and NSC-82260).[J]. Cancer Chemother Rep,1968,52(5):579−585.
    [16]
    OSTRY V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs[J]. World Mycotoxin Journal,2008,1(2):175−188. doi: 10.3920/WMJ2008.x013
    [17]
    ZHAO K, SHAO B, YANG D, et al. Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China[J]. Journal of Agricultural and Food Chemistry,2015,63(1):343−348. doi: 10.1021/jf5052738
    [18]
    XU W, HAN X, LI F, et al. Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui province, China[J]. Toxins,2016,8(11):308. doi: 10.3390/toxins8110308
    [19]
    蒋黎艳, 赵其阳, 龚蕾, 等. 超高效液相色谱串联质谱法快速检测柑橘中的5种链格孢霉毒素[J]. 分析化学,2015,43(12):1851−1858. [JIANG L Y, ZHAO Q Y, GONG L, et al. Rapid determination of five Alternaria mycotoxins in citru by ultra-high performance liquid chromatographytandem mass spectrometry[J]. Analytical Chemistry,2015,43(12):1851−1858. doi: 10.11895/j.issn.0253-3820.150370
    [20]
    RYCHLIK M, LEPPER H, WEIDNER C, et al. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management[J]. Food Control,2016,68:181−185. doi: 10.1016/j.foodcont.2016.03.035
    [21]
    JAHANBAN-ESFAHLAN A, OSTADRAHIMI A, JAHANBAN-ESFAHLAN R, et al. Recent developments in the detection of bovine serum albumin[J]. International Journal of Biological Macromolecules,2019:138.
    [22]
    MORADI N, ASHRAFI-KOOSHK M R, CHAMANI J, ET AL. Separate and simultaneous binding of tamoxifen and estradiol to human serum albumin: Spectroscopic and molecular modeling investigations[J]. Journal of Molecular Liquids,2018,249:1083−1096. doi: 10.1016/j.molliq.2017.11.056
    [23]
    VALENTINA S, CRISTINA F, NICOLA C, et al. Interaction of chlorogenic acids and quinides from coffee with human serum albumin[J]. Food Chemistry,2015,168:332−340. doi: 10.1016/j.foodchem.2014.07.080
    [24]
    YAN J, WANG Q, PAN Q, et al. Assessment of the interaction between fraxinellone and bovine serum albumin by optical spectroscopy and molecular modeling methods[J]. Journal of Luminescence,2013,137:180−185. doi: 10.1016/j.jlumin.2012.12.036
    [25]
    NUNES N M, COELHO P A F, PATINO A A J, et al. Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin: A thermodynamic approach[J]. Food Chemistry,2017,237:525−531. doi: 10.1016/j.foodchem.2017.05.131
    [26]
    江涛. 四种重点黄曲霉毒素与人血清白蛋白的作用及机理研究[D]. 重庆: 西南大学, 2016.

    JIANG T. The interaction mechanism between the four major aflatoxins and human albumin serum[D]. Chongqing: Southwest University, 2016.
    [27]
    胡晶静. 碳量子点和纳米氧化铈与蛋白质的相互作用及机制研究[D]. 杭州: 浙江大学, 2020.

    HU J J. Study on the interaction and corresponding mechanism of carbon quantum dots and nano ceria with proteins[D]. Hangzhou: Zhejiang University, 2020.
    [28]
    TANG B, HUANG Y, MA X, et al. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity[J]. Food Chemistry,2016,212:434−442. doi: 10.1016/j.foodchem.2016.06.007
    [29]
    SOOD D, KUMAR N, RATHEE G, et al. Mechanistic interaction study of bromo-noscapine with bovine serum albumin employing spectroscopic and chemoinformatics approaches[J]. Scientific Reports,2018:8.
    [30]
    YUE Y, LIU J, LIU R, et al. Binding of helicid to human serum albumin: A hybrid spectroscopic approach and conformational study[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2014,124:46−51. doi: 10.1016/j.saa.2013.12.108
    [31]
    刘璐. 糖皮质激素与牛血清白蛋白相互作用机制的研究: 代谢物、联用药物的影响[D]. 锦州: 渤海大学, 2021.

    LIU L. Study on the mechanism of action between glucocorticoids and bovine serum albumin: Effects of metabolites and combination drugs[D]. Jinzhou: Bohai University, 2021.
    [32]
    SUN Q, YANG H, TANG P, et al. Interactions of cinnamaldehyde and its metabolite cinnamic acid with human serum albumin and interference of other food additives[J]. Food Chemistry,2018,243:74−81. doi: 10.1016/j.foodchem.2017.09.109
    [33]
    LI Y, YOU G, ZHEN Y, et al. Investigation of the interaction between patulin and human serum albumin by a spectroscopic method, atomic force microscopy, and molecular modeling[J]. Biomed Research International,2014,2014(10):734850.
    [34]
    LI Y, WANG H, JIA B, et al. Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2013,30(2):356−364.
    [35]
    KLOTZ I M. Physicochemical aspects of drug-protein interactions-general perspective[J]. Annals of the New York Academy of Sciences,1973,226(NOV26):18−35.
    [36]
    ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions-forces contributing to stability[J]. Biochemistry,1981,20(11):3096−3102. doi: 10.1021/bi00514a017
    [37]
    METI M D, BYADAGI K S, NANDIBEWOOR S T, et al. Multi-spectral characterization & effect of metal ions on the binding of bovine serum albumin upon interaction with a lincosamide antibiotic drug, clindamycin phosphate[J]. Journal of Photochemistry and Photobiology B-Biology,2014,138:324−330. doi: 10.1016/j.jphotobiol.2014.05.024
    [38]
    DOHARE N, KHAN A B, MAURYA N, et al. An insight into the binding of aceclofenac with bovine serum albumin at physiological condition: A spectroscopic and computational approach[J]. Journal of Biomolecular Structure & Dynamics,2018,36(2):398−406.
    [39]
    SHAGHAGHI M, DEHGHAN G, RASHTBARI S, et al. Multispectral and computational probing of the interactions between sitagliptin and serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,223:117286. doi: 10.1016/j.saa.2019.117286
  • Cited by

    Periodical cited type(9)

    1. 尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
    2. 王宇昂,刘晓鹏,宋少云,曹梅丽,张永林. 基于多耦合物理场的“香菇-热风”互作过程分析. 武汉轻工大学学报. 2024(06): 94-102 .
    3. 张瑞,李国伟,刘扬,兰海鹏,张永成,范修文. 坚果干燥技术研究现状分析及展望. 新疆农机化. 2023(02): 34-38+48 .
    4. 肖更生,林可为,沈乔眉,刘东杰,马路凯,王锋. 岭南特色水果干燥加工技术研究进展. 轻工学报. 2023(04): 1-10 .
    5. 刘烨,陈鹏枭,朱文学,樊梦珂,吴建章,蒋萌蒙. 农产品干燥过程数值模拟研究现状及进展. 食品与发酵工业. 2023(16): 331-339 .
    6. 王雪妃,王田,许铭强,张艳艳,承春平,杜雨桐,陈恺,李焕荣. 赛买提鲜杏整果热风干燥特性及水分迁移规律研究. 食品与发酵工业. 2023(20): 91-99 .
    7. 王泽林,刘芳,耿文广,高玲,张大鹏,李子淳,张潇. 苹果切片对流干燥过程热湿影响因素模拟. 煤气与热力. 2022(12): 14-19 .
    8. 李佳欢,杨斌,任佳媛,金文松,孙淑静,胡开辉. 热风干燥温度对荷叶离褶伞干燥特性及挥发性风味物质的影响. 菌物学报. 2021(12): 3304-3319 .
    9. 蒋华彬,白洁,张小飞,李经伟,李玉美,郭宏,彭义交. 气流膨化过程中马铃薯方便粥水分变化动力学模型及品质变化分析. 食品科学. 2021(23): 137-144 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (155) PDF downloads (15) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return