MA Yinlong, GUO Ruibin, KONG Xiangli, et al. Effect of Ultra High Pressure on the Structure of Whey Protein Concentrate and Functional Analysis of Simulated Digestion Products in Vitro[J]. Science and Technology of Food Industry, 2022, 43(8): 93−104. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080003.
Citation: MA Yinlong, GUO Ruibin, KONG Xiangli, et al. Effect of Ultra High Pressure on the Structure of Whey Protein Concentrate and Functional Analysis of Simulated Digestion Products in Vitro[J]. Science and Technology of Food Industry, 2022, 43(8): 93−104. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080003.

Effect of Ultra High Pressure on the Structure of Whey Protein Concentrate and Functional Analysis of Simulated Digestion Products in Vitro

More Information
  • Received Date: August 02, 2021
  • Available Online: February 18, 2022
  • The purpose of this study was to verify the effect of ultra-high pressure treatment on the structure of whey protein concentrate, and to explore its functional changes after entering the human digestive process through simulated digestion in vitro. The effects of ultra-high pressure on the structure of whey protein concentrate were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism, fluorescence spectrum and ultraviolet absorption spectrum. Then, the molecular changes of whey protein concentrate after simulated digestion in vitro were analyzed by SDS-PAGE, particle size and Zeta potential. Then the antioxidant activity of its simulated digestion products in vitro (ABTS+ free radical scavenging rate, DPPH free radical scavenging rate and Fe3+ reducing power) and the proliferation effect of animal Bifidobacterium BB-12 were studied to determine the optimal ultra-high pressure conditions and explore the functional changes before and after digestion. The results showed that, UHP treatment had a significant effect on the tertiary structure of whey protein concentrate, and the 600 MPa for 30 min had the greatest change in the tertiary structure, but the effect on the primary or secondary structure of protein was not significant. The whey protein concentrate was completely hydrolyzed into small peptides or amino acids after intestinal digestion, and the ultrahigh pressure treatment had no significant effect on the molecular weight of the stomach after digestion, and there was no significant difference between the whey protein and the undigested sample. With the simulated digestion process in vitro, the particle size of whey protein concentrate first decreased and then increased, and the absolute value of Zeta potential first decreased and then increased, the antioxidant activity of undigested whey protein concentrate gradually increased with the increasing of pressure and time, the antioxidant activity of samples after gastric digestion and intestinal digestion firstly increased and then decreased with the increase of pressure and time, and the effect of undigested samples on promoting the growth of Bifidobacterium Bb-12 at 500 MPa for 15 min was the best. The samples after gastric digestion could promote its growth at 200 MPa for 30 min and 300 MPa for 30 min, and the samples after intestinal digestion could inhibit its growth. The results of this study would provide a further theoretical basis for the application of ultra-high pressure technology in dairy industry.
  • [1]
    AMMAR I, GHARSALLAH H, BRAHIM A B, et al. Optimization of gluten-free sponge cake fortified with whey protein concentrate using mixture design methodology[J]. Food Chemistry,2020,343:128.
    [2]
    JMMD O V, ALTAMURA D, HERRERA M L, et al. Physical and structural properties of whey protein concentrate-corn oil-TiO2 nanocomposite films for edible food-packaging[J]. Food Packaging and Shelf Life,2020,26:100.
    [3]
    耿浩, 刘悦, 梁新婷, 等. 热诱导对乳清浓缩蛋白和分离蛋白乳化性及稳定性的影响[J]. 中国食品学报,2016,16(8):71−77. [GENG H, LIU Y, LIANG X T, et al. Effect of heat induction on emulsification and stability of whey protein concentrate and protein isolate[J]. Chinese Journal of Food,2016,16(8):71−77.
    [4]
    王超, 曹传爱, 蔡浚泽, 等. 热处理乳清浓缩蛋白乳化体系储藏稳定性研究[J]. 食品研究与开发,2017,38(23):6−12. [WANG C, CAO C A, CAI J Z, et al. Study on storage stability of heat treated whey protein concentrate emulsion system[J]. Food Research and Development,2017,38(23):6−12. doi: 10.3969/j.issn.1005-6521.2017.23.002
    [5]
    孙亚婷, 蒋姗姗, 曹宋宋, 等. 聚合乳清浓缩蛋白对发酵乳饮料稳定性的影响[J]. 中国食品学报,2018,18(3):157−162. [SUN Y T, JIANG S S, CAO S S, et al. Effect of polymerized whey protein concentrate on the stability of fermented milk beverage[J]. Chinese Journal of Food,2018,18(3):157−162.
    [6]
    徐容. 浅谈二十一世纪食品工业新技术的应用[C]//上海食文化, 2006: 111−114.

    XU R. On the application of new technologies in the food industry in the 21st century [C]// Shanghai Food Culture, 2006: 111−114.
    [7]
    陈启航, 文丽华, 陈小娥, 等. 超高压辅助脱壳对虾夷扇贝肌原纤维蛋白生化特性及结构的影响[J]. 食品科学,2021,42(11):102−107. [CHEN Q H, WEN L H, CHEN X E, et al. Effects of ultra-high pressure assisted shelling on biochemical characteristics and structure of myofibrillar protein of shrimp scallop[J]. Food Science,2021,42(11):102−107. doi: 10.7506/spkx1002-6630-20200603-040
    [8]
    胡志和, 赵旭飞, 鲁丁强, 等. 超高压结合温热处理对脱脂乳透光率和粒径及蛋白溶解性的影响[J/OL]. 食品科学: 1−18[2021-08-29]. http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.ts.20201207.1017.010.html.

    HU Z H, ZHAO X F, LU D Q, et al. Effects of ultra-high pressure combined with warm heat treatment on light transmittance, particle size and protein solubility of skimmed milk [J/OL]. Food Science: 1−18 [2021-08-29]http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.ts.20201207.1017.010.html.
    [9]
    姜姝, 腾军伟, 刘振民, 等. 超高压处理对再制奶油干酪质构、流变学特性及微观结构的影响[J]. 食品科学,2021,42(5):84−91. [JIANG S, TENG J W, LIU Z M, et al. Effects of ultra-high pressure treatment on texture, rheological properties and microstructure of processed cream cheese[J]. Food Science,2021,42(5):84−91.
    [10]
    陈壁, 黄勇桦, 张建平, 等. 体外模拟胃肠道消化和结肠发酵对长黑青稞多酚生物有效性和抗氧化活性的影响[J]. 食品科学,2020,41(21):28−35. [CHEN B, HUANG Y H, ZHANG J P, et al. Effects of simulated gastrointestinal digestion and colonic fermentation on polyphenol bioavailability and antioxidant activity of changhei highland barley in vitro[J]. Food science,2020,41(21):28−35. doi: 10.7506/spkx1002-6630-20191027-300
    [11]
    李斌, 张继月, 耿丽娟, 等. 软枣猕猴桃在体外模拟消化过程中酚类物质及抗氧化活性的变化规律[J/OL]. 食品科学: 1−14[2021-08-29]. http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.TS.20210315.1638.029.html.

    LI B, ZHANG J Y, GENG L J, et al. Changes of phenolic substances and antioxidant activity of soft jujube kiwifruit during simulated digestion in vitro [J/OL]. Food Science: 1−14 [2021-08-29]http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.TS.20210315.1638.029.html.
    [12]
    DIDIER D, ALESSANDRA B, ANDRE B, et al. An international network for improving health properties of food by sharing our knowledge on the digestive process[J]. Food Digestion,2011,2(1-3):23−25. doi: 10.1007/s13228-011-0011-8
    [13]
    SUN C, Dai L, LIU F, et al. Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution[J]. Food Chemistry,2016,210(1):388−395.
    [14]
    何晓叶, 任爽, 郑伊琰, 等. 不同缓冲体系下超高压处理对乳铁蛋白结构及理化性质的影响[J]. 中国食品学报,2021,34(5):174−184. [HE X Y, REN S, ZHENG Y Y, et al. Effects of ultra-high pressure treatment on the structure and physicochemical properties of lactoferrin under different buffer systems[J]. Chinese Journal of Food,2021,34(5):174−184.
    [15]
    叶钰, 高金燕, 陈红兵, 等. 超声波加工对蛋清蛋白质结构和凝胶特性的影响[J]. 食品科学,2018,39(21):45−52. [YE Y, GAO J Y, CHEN H B, et al. Effects of ultrasonic processing on protein structure and gel properties of egg white[J]. Food Science,2018,39(21):45−52. doi: 10.7506/spkx1002-6630-201821007
    [16]
    MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food—an international consensus[J]. Food & Function,2014,5(6):1113−1124.
    [17]
    OZGEN M, REESE R N, TULIO A Z, et al. Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods.[J]. Journal of Agricultural and Food Chemistry,2006,54(4):151.
    [18]
    LIU Q, KONG B H, YOU L L, et al. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis[J]. Food Chemistry,2009,118(2):403−410.
    [19]
    LIU Q, KONG B H, HAN J C, et al. Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions[J]. Food Structure,2014,1(2):145−154. doi: 10.1016/j.foostr.2013.11.004
    [20]
    李梦寒. α-乳白蛋白对肠道菌群的影响[D]. 哈尔滨: 东北农业大学, 2019.

    LI M H. Effect of α-lactalbumin on intestinal flora [D]. Harbin: Northeast Agricultural University, 2019.
    [21]
    BRENNAN C A, NAKATSU G, GALLINI C C A, et al. Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum[J]. Microbiology,2021,12(2):47.
    [22]
    步营, 何玮, 胡显杰, 等. 超高压对蓝蛤酶解液风味及其蛋白质结构的影响[J]. 食品科学技术学报,2021,39(1):104−116. [BU Y, HE W, HU X J, et al. Effect of ultra high pressure on flavor and protein structure of enzymatic hydrolysate of blue clam[J]. Journal of Food Science and Technology,2021,39(1):104−116.
    [23]
    杜丽娜. 超高压处理对荞麦13S球蛋白结构与功能特性的影响[D]. 上海: 上海应用技术大学, 2020.

    DU L N. Effects of ultra high pressure treatment on the structure and functional properties of buckwheat 13S globulin [D]. Shanghai: Shanghai University of applied technology, 2020.
    [24]
    赵飞. 物理预处理对大豆分离蛋白结构和理化性质的影响机制[D]. 泰安: 山东农业大学, 2019.

    ZHAO F. Effect mechanism of physical pretreatment on structure and physicochemical properties of soybean protein isolate [D]. Tai'an: Shandong Agricultural University, 2019.
    [25]
    LI M, MA Y, MICHAEL O. Ngadi. Binding of curcumin to β-lactoglobulin and its effect on antioxidant characteristics of curcumin[J]. Food Chemistry,2013,141(2):1504−1511. doi: 10.1016/j.foodchem.2013.02.099
    [26]
    CHICON R, LOPEZ R, ALONSO E, et al. Proteolytic pattern, antigenicity, and serum immunoglobulin E binding of β-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments[J]. Journal of Dairy Science,2008,91(3):928−938. doi: 10.3168/jds.2007-0657
    [27]
    何晓叶, 任爽, 郑伊琰, 等. 不同缓冲体系下超高压处理对乳铁蛋白结构及理化性质的影响[J]. 中国食品学报,2021,21(5):174−184. [HE X Y, REN S, ZHENG Y Y, et al. Effects of ultra-high pressure treatment on the structure and physicochemical properties of lactoferrin under different buffer systems[J]. Chinese Journal of Food,2021,21(5):174−184.
    [28]
    LEE S, KIM S H, JO Y, et al. Conformation transition kinetics of silk fibroin in aqueous solution explored using circular dichroism spectroscopy[J]. ChemistrySelect,2021,6(8):1735−1740. doi: 10.1002/slct.202004180
    [29]
    TAO Z, BO J, MING M, et al. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates[J]. Food Chemistry,2012,135(3):904−912. doi: 10.1016/j.foodchem.2012.05.097
    [30]
    孙颜君, 李志刚, 莫蓓红, 等. 超高压处理对浓缩乳清蛋白80加工性质和蛋白结构的影响[J]. 食品工业科技,2015,36(12):78−82,86. [SUN Y J, LI Z G, MO B H, et al. Effect of ultra high pressure treatment on processing properties and protein structure of concentrated whey protein 80[J]. Food Industry Science and Technology,2015,36(12):78−82,86.
    [31]
    ALI O, HANAN A. G, MAHMOUD A H, et al. Antibacterial peptides generated by Alcalase hydrolysis of goat whey[J]. LWT-Food Science and Technology,2016,65(5):480−486.
    [32]
    MARTINA B O, RICHARD J, et al. Antioxidant effects of enzymatic hydrolysates of whey protein concentrate on cultured human endothelial cells[J]. International Dairy Journal,2014,36(2):128−135. doi: 10.1016/j.idairyj.2014.01.013
    [33]
    PAN D, CAO J, GUO H, et al. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate[J]. Food Chemistry,2012,130(1):121−126. doi: 10.1016/j.foodchem.2011.07.011
    [34]
    李梦寒, 王志勇, 盛雪, 等. 基于16S rRNA技术分析α-乳白蛋白对大鼠肠道菌群的影响[J]. 食品科学,2020,41(6):164−171. [LI M H, WANG Z Y, SHENG X, et al. Analysis based on 16S rRNA technology α- Effect of lactalbumin on intestinal flora of rats[J]. Food Science,2020,41(6):164−171.
    [35]
    朱秀清, 王源, 朱颖, 等. 大豆脑磷脂对汉麻分离蛋白Pickering乳液的形成及其性质的影响[J/OL]. 食品工业科技: 1−11[2021-07-23]. https://doi.org/10.13386/j.issn1002-0306.2021020124.

    ZHU X Q, WANG Y, ZHU Y, et al. Effects of soybean phosphatidylcholine on the formation and properties of hemp isolate Pickering emulsion [J/OL]. Food Industry Technology: 1-11[2021-07-23].https://doi.org/10.13386/j.issn1002-0306.2021020124.]
    [36]
    JU M, ZHU G, HUANG G, et al. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles[J]. Food Hydrocolloids,2019,99:105.
    [37]
    王笑涵, 姜卉, 吴海涛, 等. 大黄鱼卵分离蛋白乳液的构筑及其体外消化规律[J]. 食品科学,2020,41(18):8−13. [WANG X H, JIANG H, WU H T, et al. The construction and in vitro digestion of rhubarb egg protein isolate emulsion[J]. Food Science,2020,41(18):8−13. doi: 10.7506/spkx1002-6630-20190914-167
    [38]
    庞佳坤, 郑远荣, 刘振民, 等. 超高压对乳清分离蛋白结构和抗氧化活性的影响[J]. 食品与发酵工业,2020,46(4):72−77. [PANG J K, ZHENG Y R, LIU Z M, et al. Effects of ultra-high pressure on the structure and antioxidant activity of whey protein isolate[J]. Food and Fermentation Industry,2020,46(4):72−77.
    [39]
    王娇. 超高压处理对蜂王浆品质特性的影响[D]. 兰州: 甘肃农业大学, 2020.

    WANG J. Effect of ultra high pressure treatment on quality characteristics of royal jelly[D]. Lanzhou: Gansu Agricultural University, 2020.
    [40]
    赵越. 超高压处理对Lactobacillus delbrueckii QS306发酵乳ACE抑制活性及品质的影响[D].呼和浩特:内蒙古农业大学, 2020.

    ZHAO Y. Effects of ultra high pressure treatment on ACE inhibitory activity and quality of Lactobacillus delbrueckii QS306 fermented milk [D] Agricultural University of Inner Mongolia: Hohhot, 2020.
    [41]
    朱金艳. 高静水压对蓝莓汁品质影响及杀菌机理研究[D]. 沈阳: 沈阳农业大学, 2018.

    ZHU J Y. Study on the effect of high hydrostatic pressure on the quality of blueberry juice and its sterilization mechanism[D]. Shenyang: Shenyang Agricultural University, 2018.
    [42]
    王贝贝, 于哲, 李强, 等. 模拟胃肠消化对羊皮胶原肽抗氧化活性的影响及其消化保护分析[J/OL]. 食品科学: 1-15[2021-08-29]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210430.1550.024.html.

    WANG B B, YU Z, LI Q, et al. Effect of simulated gastrointestinal digestion on antioxidant activity of sheep skin collagen peptide and its digestive protection[J/OL]. Food Science: 1-15 [2021-08-29]http://kns.cnki.net/kcms/detail/11.2206.TS.20210430.1550.024.html.
    [43]
    TANG B Z, TAI P H, HUA B L, et al. The Structure-activity relationship of the antioxidant peptides from natural proteins[J]. Molecules (Basel, Switzerland),2016,21(1):72. doi: 10.3390/molecules21010072
    [44]
    马思彤, 刘静波, 张婷, 等. 体外模拟胃肠消化及碱性蛋白酶处理后蛋清肽抗氧化活性差异及肽序列解析[J]. 食品科学,2020,41(21):122−129. [MA S T, LIU J B, ZHANG T, et al. Antioxidant activity difference and peptide sequence analysis of egg white peptides after simulated gastrointestinal digestion and alkaline protease treatment in vitro[J]. Food Science,2020,41(21):122−129.
    [45]
    白英, 殷佳棋, 兰秀芬, 等. 乳清蛋白水解物对产胞外多糖L. paracasei LX5的促生长作用研究[J]. 中国乳品工业,2021,49(2):14−18,23. [BAI Y, YIN J Q, LAN X F, et al. Study on the growth promoting effect of whey protein hydrolysate on the production of extracellular polysaccharideL. paracasei LX5[J]. China Dairy Industry,2021,49(2):14−18,23.
    [46]
    LUCAS A, SODINI I, MONNET C, et al. Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates[J]. International Dairy Journal,2004,14(1):47−53. doi: 10.1016/S0958-6946(03)00147-X
    [47]
    RIVALAIN N, ROQUAIN J, DEMAZEAU G. Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies[J]. Biotechnology Advances,2010,28(6):659−672. doi: 10.1016/j.biotechadv.2010.04.001
    [48]
    PELLEGRINI A, THOMAS U, BRAMAZ N, et al. Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule[J]. Biochimica et Biophysica Acta (BBA) - General Subjects,1999,1426(3):439−448. doi: 10.1016/S0304-4165(98)00165-2
  • Cited by

    Periodical cited type(4)

    1. 宁豫昌,高俊杰,袁艺萌. 复合酶处理对刺梨、苹果混合发酵果汁的影响. 食品与生物技术学报. 2023(08): 87-94 .
    2. 袁先铃,刘梓建,张谱予,万晓玉. 洋葱汁的不同澄清工艺优化及其对品质影响的对比研究. 中国调味品. 2022(06): 55-60 .
    3. 杜慧慧,汪开拓,王富敏,邱铃岚,张娟娟,黎春红. 基于高通量测序分析不同品种柠檬NFC果汁的微生物多样性. 食品科技. 2021(03): 302-307 .
    4. 李毅. 果胶酶在食品产业领域的应用技术研究. 科技广场. 2020(03): 50-56 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (334) PDF downloads (27) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return