LI Wenjuan, CHU Yuelei, PAN Yuxin, et al. Hypoglycemic Effects of Polysaccharide from Dolichos lablab L. via Hypothalamic-Pituitary-Adrenal Axis[J]. Science and Technology of Food Industry, 2022, 43(7): 361−367. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070363.
Citation: LI Wenjuan, CHU Yuelei, PAN Yuxin, et al. Hypoglycemic Effects of Polysaccharide from Dolichos lablab L. via Hypothalamic-Pituitary-Adrenal Axis[J]. Science and Technology of Food Industry, 2022, 43(7): 361−367. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070363.

Hypoglycemic Effects of Polysaccharide from Dolichos lablab L. via Hypothalamic-Pituitary-Adrenal Axis

More Information
  • Received Date: August 01, 2021
  • Available Online: February 09, 2022
  • The present study aimed to investigate hypoglycemic effect of polysaccharide from Dolichos lablab L. (named WHBP) involved in hypothalamic-pituitary-adrenal (HPA) axis in a type II diabetic rat model. In this work, Type II diabetic rat model was established by high fat and high sugar diet combined with the tail vein injection of STZ (30 mg/kg BW), and then these rats were received 1.5 mL of WHBP referring to high (100 mg/kg bw), medium (50 mg/kg bw) and low (25 mg/kg bw) dose of WHBP, respectively. Administration for 4 weeks, the main parameters were examined including body weight, fasting blood glucose (FBG), the serum contents of insulin (INS), corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Additionally, the levels of sodium-glucose cotransporter 1 (SGLT1)mRNA was also determined in this work. The results showed that WHBP significantly reduced the levels of FBG and serum INS in type II diabetic rats(P<0.05). Meanwhile, WHBP prevention could inhibit the weight loss in type II diabetic rats, but no significance(P>0.05). Furthermore, high-dose WHBP significantly reduced serum CRH, ACTH and CORT contents in type II diabetic rats(P<0.05), suggesting that the activation of HPA axis was attenuated in the atype II diabetic rats by the treatment of WHBP. Moreover, treatment of the WHBP remarkable decreased the levels of SGLT1 mRNA in type II diabetic rats(P<0.05). Collectively, these results suggested that WHBP treatment could improve hypoglycemic effects through via attenuation of insulin resistance, and HPA axis activation and SGLT1 mRNA expression.
  • [1]
    甘婷. 糖尿病发生影响因素及其分子机制研究[D]. 兰州: 兰州大学, 2020.

    GAN T. A study on risk factors and molecular mechanism of diabetes mellitus[D]. Lanzhou: Lanzhou University, 2020.
    [2]
    孙天慧. 2型糖尿病慢性并发症的临床特点及其影响因素分析[D]. 合肥: 安徽医科大学, 2020.

    SUN T H. Study of risk factors in type 2 diabetes mellitus (T2DM) with chronic complications[D]. Hefei: Medical University of Anhui, 2020.
    [3]
    FARHANGI M A, JAVID A Z, SARMADI B, et al. A randomized controlled trial on the efficacy of resistant dextrin, as functional food, in women with type 2 diabetes: Targeting the hypothalamic-pituitary-adrenal axis and immune system[J]. Clinical Nutrition,2018,37(4):1216−1223. doi: 10.1016/j.clnu.2017.06.005
    [4]
    BUBLITZ M H, MONTEIRO J F, CARAGANIS A, et al. Obstructive sleep apnea in gestational diabetes: A pilot study of the role of the hypothalamic-pituitary-adrenal axis[J]. Journal of Clinical Sleep Medicine,2018,14(1):87−93. doi: 10.5664/jcsm.6888
    [5]
    高阳. 超重/肥胖2型糠尿病患者伴焦虑抑郁状态HPA轴功能变化及与中医证型的相关性研究[D]. 成都: 成都中医药大学, 2019.

    GAO Y. Relationship among functional changes of HPA in overweight/obese patients with type 2 diabetes mellitus with anxiety and depression and its correlation with TCM syndromes[D]. Chengdu: Chengdu University of Chinese Medicine, 2019.
    [6]
    HEPSEN S, SENCAR E, SAKIZ D, et al. Serum cortisol level after low dose dexamethasone suppression test may be predictive for diabetes mellitus and hypertension presence in obese patients: A retrospective study[J]. Diabetes Research and Clinical Practice,2020,161:108081−108089. doi: 10.1016/j.diabres.2020.108081
    [7]
    ZHAOE Y, WEN C, FENG Y, et al. Effects of ultrasound-assisted extraction on the structural, functional and antioxidant properties of Dolichos lablab L. protein[J]. Process Biochemistry,2021,101:274−284. doi: 10.1016/j.procbio.2020.11.027
    [8]
    易泳鑫. 林兰教授治疗糖尿病周围神经病变经验探讨[D]. 北京: 北京中医药大学, 2016.

    YI Y X. Professor Linlan's experience in treating diabetic peripheral neuropathy[D]. Beijing: Beijing University of Chinese Medicine, 2016.
    [9]
    张贤益, 李文娟, 钟亮, 等. 白扁豆多糖对神经细胞缺氧性凋亡的保护机制[J]. 食品科学,2018,39(3):222−228. [ZHANG X Y, LI W J, ZHONG L, et al. Protective mechanism of polysaccharides from Dolichos bean seeds (Dolichos lablab L. ) on hypoxia-induced neuronal apoptosis[J]. Food Science,2018,39(3):222−228.
    [10]
    付王威, 吴睿婷, 万敏, 等. 白扁豆多糖对Ⅱ型糖尿病大鼠的降血糖降血脂作用[J/OL]. 现代食品科技: 1−8[2021-06-12]. https://doi.org/10.13982/j.mfst.1673-9078.2021.8.1201.

    FU W W, WU R T, WAN M, et al. Hypoglycemic and antihyperlipidemic effects of non-starch polysaccharide from Dolichos lablab L. in type II diabetic rats[J/OL]. Modern Food Science and Technology: 1−8[2021-06-12].https://doi.org/10.13982/j.mfst.1673-9078.2021.8.1201.
    [11]
    尹术华, 吴文英, 宋也好, 等. 白扁豆非淀粉多糖的理化性质、抗氧化活性及其抑菌性能[J]. 食品工业科技,2020,41(19):39−44. [YIN S H, WU W Y, SONG Y H, et al. Physicochemical properties, antioxidant and antibacterial capacities of non-starch polysaccharide from Dolichos lablab L.[J]. Science and Technology of Food Industy,2020,41(19):39−44.
    [12]
    BAI Z, MENG J, HUANG X, et al. Comparative study on antidiabetic function of six legume crude polysaccharides[J]. International Journal of Biological Macromolecules,2020,154:25−30. doi: 10.1016/j.ijbiomac.2020.03.072
    [13]
    李青. AE2蛋白在高糖诱导内皮细胞凋亡中的作用[D]. 南昌: 南昌大学, 2007.

    LI Q. Role of anion exchanger-2(AE2) in apoptosis of endothelial cells induced by hyperglucose[D]. Nanchang: Nanchang University, 2007.
    [14]
    胡吉蕾, 郑乐愉, 唐薇, 等. 赶黄草水提物对高脂饮食联合STZ诱导的Ⅱ型糖尿病大鼠的降血糖作用[J]. 现代食品科技,2020,36(2):25−31. [HU J L, ZHENG L Y, TANG W, et al. Hypoglycemic effects of extracts of Penthorum chinense Pursh in high fat diet and streptozotocin-induced type Ⅱ diabetic rats[J]. Modern Food Science and Technology,2020,36(2):25−31.
    [15]
    CHEN Z, WANG C, PAN Y, et al. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice[J]. Food & Function,2018,9(1):426−439.
    [16]
    SHIN W Y, AN M J, IM N G, et al. Changes in blood glucose level after steroid injection for musculoskeletal pain in patients with diabetes[J]. Annals of Rehabilitation Medicine,2020,44(2):117. doi: 10.5535/arm.2020.44.2.117
    [17]
    李露, 张贤益, 汤小芳, 等. 膳食中碳水化合物与代谢综合征的研究进展[J]. 食品科学,2019,40(7):268−273. [LI L, ZHANG X Y, TANG X F, et al. Advances in understanding dietary carbohydrates and metabolic syndrome[J]. Food Science,2019,40(7):268−273. doi: 10.7506/spkx1002-6630-20171210-117
    [18]
    王彤, 何志谦, 梁奕铨. 干豆对糖尿病患者血糖指数和C肽的影响[J]. 营养学报,1998(4):44−49. [WANG T, HE Z Q, LIANG Y Q. Effects of dried beans on glycemic index and C peptide in patients with diabetes mellitus[J]. Journal of Nutrition,1998(4):44−49.
    [19]
    舒丹阳, 熊犍, 刘鹏展, 等. 沙棘籽蛋白肽对db/db小鼠降血糖活性及肾脏保护作用[J]. 食品工业科技,2020,41(21):317−321. [SHU D Y, XIONG J, LIU Z P, et al. Hypoglycemic activity and renal protection effect of seabuckthorn seed protein peptide in db/db mice[J]. Science and Technology of Food Industy,2020,41(21):317−321.
    [20]
    姜少磊, 刘兵峰, 刘钟栋. 食用索马甜对小鼠血糖及血脂的影响[J]. 食品工业科技,2020,41(8):196−201. [JIANG S L, LIN B F, LIU Z D. Effects of Thaumatin on blood glucose and blood lipid in mice[J]. Science and Technology of Food Industy,2020,41(8):196−201.
    [21]
    CERFM E. Beta cell physiological dynamics and dysfunctional transitions in response to islet inflammation in obesity and diabetes[J]. Metabolites,2020,10(11):452. doi: 10.3390/metabo10110452
    [22]
    BESEDOVSKY H, SORKIN E. Network of immune-neuroendo-crine interactions[J]. Clin Exp Lm Munol,1977,27(1):1−12.
    [23]
    ZHANG H N, YU X B, TANG C R, et al. Atorvastatin ameliorates depressive behaviors and neuroinflammatory in streptozotocin-induced diabetic mice[J]. Psychopharmacology,2020,237(3):695−705. doi: 10.1007/s00213-019-05406-w
    [24]
    LIN Y, ZHANG Z, WANG S, et al. Hypothalamus-pituitary-adrenal axis in glucolipid metabolic disorders[J]. Reviews in Endocrine and Metabolic Disorders,2020,21(4):421−429. doi: 10.1007/s11154-020-09586-1
    [25]
    MOSILIi P, MKHIZE B C, NGUBANE P, et al. The dysregulation of the hypothalamic-pituitary-adrenal axis in diet-induced prediabetic male Sprague Dawley rats[J]. Nutrition & Metabolism,2020,17(1):1−12.
    [26]
    丁曦, 姚定国. 黄芪多糖对2型糖尿病大鼠HPA轴及海马糖皮质激素受体水平的调节作用[J]. 江西中医学院学报,2013,25(5):58−60. [DING X, YAO D G. Regulating effect of APS on the expression levels of HPA axis and GR mRNA in the hippocampus of type 2 diabetic rats[J]. Journal of Jiangxi University of Traditional Chinese Medicine,2013,25(5):58−60.
    [27]
    JAZANI N H, SAVOJ J, LUSTGARTEN M, et al. Impact of gut dysbiosis on neurohormonal pathways in chronic kidney disease[J]. Diseases,2019,7(1):21−28. doi: 10.3390/diseases7010021
    [28]
    CUSSOTTO S, SANDHU K V, DINAN T G, et al. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective[J]. Frontiers in Neuroendocrinology,2018,51:80−101. doi: 10.1016/j.yfrne.2018.04.002
    [29]
    WU Q, XU Z, SONG S, et al. Gut microbiota modulates stress-induced hypertension through the HPA axis[J]. Brain Research Bulletin,2020,162:49−58. doi: 10.1016/j.brainresbull.2020.05.014
    [30]
    KOEPSELL H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer[J]. Pharmacology & Therapeutics,2017,170:148−165.
    [31]
    DEGEN A S, KRYNYTSKA I Y, KAMYSHNYI A M. Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers[J]. Endocrine Regulations,2020,54(2):1−5.
    [32]
    WILEY J W, HIGGINS G A, ATHEY B D. Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain-gut axis[J]. Neurogastroenterol Motil,2016,28(1):12−25. doi: 10.1111/nmo.12706
  • Cited by

    Periodical cited type(10)

    1. 王睿敏,郑冬艳,但霞,李仁芳,曾庆坤,吴凤娇,黄丽,李玲. 具有潜在降压功能益生乳酸菌的筛选及其特性的研究. 食品科技. 2025(01): 1-8 .
    2. 马新淼,魏敏敏,张左利,张轶腾,牛希跃,李雨鑫,李婕,许倩. 新疆哈萨克酸马奶中功能性乳酸菌株的筛选、鉴定及功能评价. 食品安全质量检测学报. 2024(07): 151-159 .
    3. 刘怡雯,达久阿达,张敏,任秀梅,蒋绍平,田维,吴建平. 牦牛酸乳中乳酸菌的研究进展. 乳品与人类. 2024(04): 37-41 .
    4. 雷善钰,江华明,李艳,梁锦鹏,张小平,赵珂,向泉桔,辜运富. 川西高原传统发酵牦牛乳奶酪中乳酸菌多样性及优良乳酸菌的筛选. 应用与环境生物学报. 2023(01): 27-34 .
    5. 夏亚男,冯晨晨,韩荣,双全,额尔敦巴雅尔. 高产γ-氨基丁酸乳酸菌的筛选、鉴定及其益生特性研究. 食品科技. 2023(02): 14-20 .
    6. 葛善赢,张海涛,王士佳,李佳宸,吴学智,张佰清. 脉冲强光诱变选育高产乳酸植物乳杆菌及其益生特性研究. 中国酿造. 2023(10): 59-64 .
    7. 陈显玲,莫小群,杨琴,曾婷,苏龙. 植物乳杆菌XL-02发酵产γ-氨基丁酸条件的优化. 山东化工. 2022(06): 10-14 .
    8. 马莉,刘慧燕,方海田,辛世华,李一鸣,贺捷群. 产γ-氨基丁酸乳酸菌的分离鉴定及其发酵条件优化. 中国酿造. 2022(07): 94-100 .
    9. 莫小群,王雅,陈显玲,农秀丽,卢丽婷,杨福川,苏龙. 富含γ-氨基丁酸非乳益生菌香蕉发酵饮料工艺研究. 中国果菜. 2022(11): 20-26+31 .
    10. 王玲芝,白雪,蒋咏梅. 正交试验法优化灵芝菌丝体γ-氨基丁酸提取工艺. 福建农业科技. 2022(10): 44-48 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (233) PDF downloads (19) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return