ZHONG Ciping, WANG Ying, HE Chengjun, et al. Empirical Analysis of QuEChERS Method for New Risks of Polycyclic Aromatic Hydrocarbons in Spirulina[J]. Science and Technology of Food Industry, 2022, 43(7): 317−324. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070323.
Citation: ZHONG Ciping, WANG Ying, HE Chengjun, et al. Empirical Analysis of QuEChERS Method for New Risks of Polycyclic Aromatic Hydrocarbons in Spirulina[J]. Science and Technology of Food Industry, 2022, 43(7): 317−324. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070323.

Empirical Analysis of QuEChERS Method for New Risks of Polycyclic Aromatic Hydrocarbons in Spirulina

More Information
  • Received Date: July 26, 2021
  • Available Online: February 10, 2022
  • Objective: The purpose of this study was to systematically establish a gas chromatography-mass spectrometry (GC-MS/MS) analysis method for polycyclic aromatic hydrocarbons in Spirulina, and empirically analyze the new risk of polycyclic aromatic hydrocarbons found in Spirulina. Method: The polycyclic aromatic hydrocarbons of the sample were extracted twice with n-hexane ultrasonically, purified by QuEChERS, and tested after being concentrated by nitrogen blowing. Qualitative and quantitative: Separation using DB-5 MS capillary chromatographic column, multiple reaction monitoring mode (MRM) combined with matrix-matched external standard method for analysis. Results: The recovery rate was 68.8%~101.9%, the relative standard deviation was 1.8%~8.4% (n=6), the correlation coefficient of the equation reached above 0.999 within the linear range of 1~32 ng/mL, and the limit of quantitative (LOQ) was 2 μg/kg. Polycyclic aromatic hydrocarbons were detected in all 69 commercially available Spirulina samples, with the content in the range of 2.4 μg/kg to 3491 μg/kg. Conclusion: The QuEChERS detection method for 15 polycyclic aromatic hydrocarbons in Spirulina established in this paper is fast, accurate and highly sensitive, and can provide scientific technical support for daily supervision. It is necessary to pay attention to the risk of polycyclic aromatic hydrocarbons in Spirulina products, and further identify the source of pollution to establish prevention and control measures.
  • [1]
    何善生, 王力, 李健, 等. 螺旋藻研究进展[J]. 食品工业,2017(12):263−268. [HE Shansheng, WANG Li, LI Jian, et al. Advances in Spirulina research[J]. The Food Industry,2017(12):263−268.
    [2]
    潘子康, 胡丽莉. 螺旋藻的化学成分、生物学活性和应用范围的研究概述[J]. 生物学教学,2020,45(2):2−3. [PAN Zikang, HU Lili. Study overview of the chemical constituent biological activity and application scope of Spirulina[J]. Biology Teaching,2020,45(2):2−3. doi: 10.3969/j.issn.1004-7549.2020.02.001
    [3]
    丛林, 朱静华, 张兆臣. 浅谈螺旋藻的功效和使用[J]. 田径,2020(10):84. [CONG Lin, ZHU Jinghua, ZHANG Zhaocheng. Study on the efficacy and use of Spirulina[J]. Track and Field,2020(10):84.
    [4]
    ZHENG Yi, ZHU Fan, LIN Dan, et al. Optimization of formulation and processing of Moringa oleifera and Spirulina complex tablets[J]. Saudi Journal of Biological Sciences,2016,24(1):122−126.
    [5]
    ZHOU Ting, WANG Jingjing, ZHENG Hongli, et al. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis[J]. Bioresource Technology,2018,269:285−291. doi: 10.1016/j.biortech.2018.08.131
    [6]
    RAMESH G. Chapter 42-Spirulina[J]. Nutraceuticals,2016:569−583.
    [7]
    GAD A S, KHADRAWY Y A, EL-NEKEETY A A, et al. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats[J]. Nutrition,2011,27(5):582−589. doi: 10.1016/j.nut.2010.04.002
    [8]
    RAJASEKAR P, PALANISAMY S, ANJALI R, et al. Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and zebrafish growth and reproductive performance[J]. International Journal of Biological Macromolecules,2019,141:809−821. doi: 10.1016/j.ijbiomac.2019.09.024
    [9]
    PARDHASARADHI B V V, ALI A M, KUMARI A L, et al. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS[J]. Mol Cancer Therapeutics,2003,2(11):1165−1170.
    [10]
    PAK W, TAKAYAMA F, MINE M, et al. Anti-oxidative and anti-inflammatory effects of Spirulina on rat model of non-alcoholic steatohepatitis[J]. Journal of Clinical Biochemistry & Nutrition,2012,51(3):227−234.
    [11]
    SERBAN M, SAHEBKAR A, DRAGAN S, et al. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations[J]. Clinical Nutrition,2016,35(4):842−851. doi: 10.1016/j.clnu.2015.09.007
    [12]
    DANANJAYA S H S, THU THAO N T, WIJERATHNA H M S M, et al. In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide[J]. Process Biochemistry,2020,92:138−148. doi: 10.1016/j.procbio.2020.03.003
    [13]
    于蕾妍, 隋君霞, 李华涛, 等. 螺旋藻多糖与银杏叶提取物复方对四氧嘧啶模型小鼠的降血糖作用[J]. 中国畜牧兽医,2019,46(7):2176−2182. [YU Leiyan, SUI Junxia, LI Huatao, et al. Hypoglycemic effect of polysaccharide from Soirulina platensis and Ginkgo biloba extract compound on alloxan-induced model mice[J]. China Animal Husbandry & Veterinary Medicine,2019,46(7):2176−2182.
    [14]
    陈祥明, 张聪, 王丹红, 等. 基于巯基-烯点击化学法的磁纳米粒子制备及用于螺旋藻中多环芳烃的分析[J]. 分析试验室,2016,35(11):1290−1294. [CHEN Xiangming, ZHANG Cong, WANG Danghong, et al. Synthesis of Fe 30_4@DA-L magnetic composites by using thiol-ene click chemistry for extraction of PAHs in Spirulina samples[J]. Chinese Journal of Analysis Laboratory,2016,35(11):1290−1294.
    [15]
    郑香平, 张春, 丁立平, 等. 高效液相色谱-荧光检测法测定螺旋藻中苯并[a]芘残留[J]. 分析科学学报,2015,31(5):709−712. [ZHENG Xiangping, ZHANG Chun, DING Liping, et al. Determination of Benzo[a]pyrene in Spirulina by high performance liquid chromatography-fluorescence detection[J]. Journal of Analytical Science,2015,31(5):709−712.
    [16]
    李荫, 柳叶, 孙晓伟, 等. 多环芳烃的样品前处理技术研究进展[J]. 环境化学,2015,34(8):1460−1469. [LI Yin, LIU Ye, SUN Xiaowei, et al. Research progress on sample pretreatment techniques for polycyclic aromatic hydrocarbons[J]. Environmental Che-mistry,2015,34(8):1460−1469. doi: 10.7524/j.issn.0254-6108.2015.08.2015020406
    [17]
    路杨, 刘印平, 王丽英, 等. 高风险食品中多环芳烃含量调查与分析[J]. 食品安全质量检测学报,2020,11(18):6608−6613. [LU Yang, LIU Yinping, WANG Liying, et al. Investigation and analysis of polycyclic aromatic hydrocarbons content in high risk food[J]. Journal of Food Safety & Quality,2020,11(18):6608−6613.
    [18]
    TEREZA S, ANNA S R, ADÉLA F, et al. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin[J]. Journal of Food Composition and Analysis,2020,87:103420. doi: 10.1016/j.jfca.2020.103420
    [19]
    段小丽. 多环芳烃污染的人体暴露和健康风险评价方法[M]. 北京: 中国环境科学出版社, 2011.

    DUAN X L. Human exposure and health risk assessment method of polycyclic aromatic hydrocarbon pollution[M] Beijing: China Environmental Science Press,2011.
    [20]
    杨丹丹, 史永富, 黄宣运, 等. 水产品中多环芳烃检测技术研究进展[J]. 食品工业,2018,39(11):259−262. [YANG Dandan, SHI Yongfu, HUANG Xuanyun, et al. Research progress of polycyclic aromatic hydrocarbon detection techniques in aquatic products[J]. The Food Industry,2018,39(11):259−262.
    [21]
    杨丹丹, 韩 峰, 史永富, 等. 高效液相色谱-紫外/荧光测定贝类体内16种多环芳烃[J]. 分析试验室,2019,38(7):828−833. [YANG Dandan, HAN Feng, SHI Yongfu, et al. Determination of 16 polycyclic aromatic hydrocarbons in shellfish by HPLC-VWD/FLD[J]. Chinese Journal of Analysis Laboratory,2019,38(7):828−833.
    [22]
    周华, 张蕴, 张喆骅, 等. 高分子印迹固相萃取技术结合GC/MS法测定食用油中16种多环芳烃[J]. 卫生研究,2016,45(6):957−962. [ZHOU Hua, ZHANG Yun, ZHANG Zhehua, et al. Determination of 16 polycyclic aromatic hydrocarbons in edible oils by gas chromatography-mass spectrometry combined with molecularly imprinted solid phase extraction[J]. Journal of Hygiene Research,2016,45(6):957−962.
    [23]
    陈曼, 何明, 郭妍婷, 等. 烟熏油炸食品及食用油中PAHs的检测及控制方法研究进展[J]. 仲恺农业工程学院学报,2017,30(3):65−71. [CHEN Man, HE Ming, GUO Yanting, et al. Research progress on detection and control of polycyclic aromatic hydrocarbons in smoked fried foods and edible oils[J]. Journal of Zhongkai University of Agriculture and Technology,2017,30(3):65−71. doi: 10.3969/j.issn.1674-5663.2017.03.014
    [24]
    王钟, 何漪, 王敏, 等. 高效液相色谱法测定蔬菜和水果中15种欧盟优控多环芳烃[J]. 食品研究与开发,2019,49(17):178−182. [WANG Zhong, HE Yi, WANG Min, et al. Determination of 15 European priority controlled polycyclic aromatic hydrocarbons in vegetables and fruits by high performance liquid chromatography[J]. Food Research and Development,2019,49(17):178−182. doi: 10.12161/j.issn.1005-6521.2019.17.031
    [25]
    彭姚珊, 李永利, 陈 鹰, 等. 气相色谱-同位素稀释质谱法测定肉中多环芳烃含量[J]. 食品科学,2019,40(12):321−325. [PENG Yaoshan, LI Yongli, CHEN Ying, et al. Determination of 16 polycyclic aromatic hydrocarbons in meat samples by gas chromatography-isotope dilution mass spectrometry approach[J]. Food Science,2019,40(12):321−325. doi: 10.7506/spkx1002-6630-20180509-142
    [26]
    沈习习, 汤晓艳, 战俊良, 等. 烧烤肉中多环芳烃的检测方法及控制措施[J]. 中国食物与营养,2019,25(11):21−25. [SHEN Xixi, TANG Xiaoyan, ZHAN Junliang, et al. Research progress in testing standards and control technologies of polycyclic aromatic hydrocarbons(PAHs) in grilled meat products[J]. Food and Nutrition in China,2019,25(11):21−25. doi: 10.3969/j.issn.1006-9577.2019.11.004
    [27]
    张雯, 冉婷. 加速溶剂-固相萃取-气相色谱质谱法测定土壤中多环芳烃[J]. 建材与装饰,2020(120):119−120. [ZHANG Wen, RAN Ting. Determination of polycyclic aromatic hydrocarbons in soil using accelerated solvent extraction and solid phase extraction with gas chromatography-mass spectrometry[J]. Construction Materials & Decoration,2020(120):119−120. doi: 10.3969/j.issn.1673-0038.2020.12.084
    [28]
    安徽省检验检疫科学技术研究院. DB 34/T 3304-2018 中草药中 16 种多环芳烃的测定气相色谱质谱法[S].安徽: 安徽市场监督管理局,2018

    Anhui Institute of Inspection and Quarantine Science and Technology. DB 34/T 3304−2018 Determination of 16 sixteen polycyclic aromatic hydrocarbons in Chinese medicinal herbs- GC/MS method[S]. Anhui:Anhui Provincial Bureau of Market Supervision, 2018.
    [29]
    PENA T, PENSADO L, CASAIS C, et al. Optimization of a microwave-assisted extraction method for the analysis of polycyclic aromatic hydrocarbons from fish samples[J]. Journal of Chromatography A,2006,1121(2):163. doi: 10.1016/j.chroma.2006.04.038
    [30]
    PFANNKOCH E A, STUFF J R, WHITECAVAGE J A, et al. A high throughput method for measuring polycyclic aromatic hydrocarbons in seafood using QuEChERS extraction and SBSE[J]. International Journal of Analytical Chemistry,2015:359629.
    [31]
    SONG Xingliang, LI Jinhua, XU Shoufang, et al. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry[J]. Talanta,2012,99(18):75.
    [32]
    RASCÓN A J, AZZOUZ A, BALLESTEROS E. Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS[J]. Food Control,2019,101:198−208. doi: 10.1016/j.foodcont.2019.02.037
    [33]
    LEE Y N, LEE S, KIM J S, et al. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products[J]. Food Chemistry,2019,277:156−161. doi: 10.1016/j.foodchem.2018.10.114
    [34]
    ABOU-ARAB A A K, ABOU-DONIA M A M, EL-DARS F, et al. Levels of polycyclic aromatic hydrocarbons (PAHs) in smoked and sun-dried fish samples from areas in Lake Victoria in Mwanza, Tanzania[J]. Journal of Food Composition and Analysis,2018,73:39−46. doi: 10.1016/j.jfca.2018.07.010
    [35]
    LU F, GUNTER K K, CHENG Q F. Heterocyclic amines and polycyclic aromatic hydrocarbons in commercial ready-to-eat meat products on UK market[J]. Food Control,2017,73:306−315. doi: 10.1016/j.foodcont.2016.08.021
    [36]
    杜鹏, 张晓娜, 董诗源. 藻类保健食品研发状况及问题探讨[J]. 海峡预防医学杂志,2020,26(6):73−75. [DU Peng, ZHANG Xiaona, DONG Shiyuan. Research and development status of algae health food and the existing problems[J]. Strait Journal of Preventive Medicine,2020,26(6):73−75.
    [37]
    邢燕, 王敏, 刘玉栋, 等. 固相萃取结合气相色谱-三重四极杆质谱法测定方便面中16种多环芳烃[J]. 食品研究与开发,2020,41(1):172−176. [XING Yan, WANG Min, LIU Yudong, et al. Analysis of polycyclic aromatic hydrocarbons in instant noodles by solid phase extraction with GC-MS/MS[J]. Food Research and Development,2020,41(1):172−176.
    [38]
    王丹红, 吴文晞, 李捷, 等. QuEChERS/高效液相色谱测定食品中15种多环芳烃[J]. 中国卫生检验杂志,2013,22(6):17−20. [WANG Danhong, WU Wenxi, LI Jie, et al. Determination of 15 PAHs in foodstuff by QuEChERS/high performance liquid chromatography[J]. Chinese Journal of Health Laboratory Technology,2013,22(6):17−20.
  • Related Articles

    [1]MIAO Xingyu, WANG Qinghua, CHAI Chunrong, FAN Xin, REN Dabing, LI Siyu, DONG Wenjiang, HU Yongdan, YI Lunzhao. Effects of Enhanced Fermentation of Saccharomyces cerevisiae and Lactobacillus plantarum on Volatile Flavor of Coffee[J]. Science and Technology of Food Industry, 2025, 46(7): 1-10. DOI: 10.13386/j.issn1002-0306.2024050272
    [2]CUI Yan, LIU Hanxin, ZHU Lin, SHANG Haitao, LIN Xudong, CHEN Shuying, XUAN Xiaoting. Effect of High Hydrostatic Pressure Sterilization on the Physicochemical Properties, Taste, and Flavor of Large Yellow Croaker (Larimichthys crocea)[J]. Science and Technology of Food Industry, 2025, 46(5): 44-55. DOI: 10.13386/j.issn1002-0306.2024020169
    [3]LIU Yang, HUANG Jia, JIA Hongfeng, FANG Xiaowei, LONG Juyi, LAN Ning. Effects of Different Cooking Methods on Volatile Flavor Compounds in Beef[J]. Science and Technology of Food Industry, 2022, 43(10): 305-313. DOI: 10.13386/j.issn1002-0306.2021080198
    [4]LIU Guomin, QIN Weizhi, WEI Rongchang, YI Ruolan, LIAO Yujiao, ZHENG Xu, CHE Jianglü. Comparative Analysis of Volatile Flavor Compounds in Different Varieties (Lines) of Potatoes[J]. Science and Technology of Food Industry, 2022, 43(9): 284-292. DOI: 10.13386/j.issn1002-0306.2021080141
    [5]MA Guoli, TANG Shanhu, LI Sining, LIU Huilun, REN Ran. Changes of Physicochemical Properties and Volatile Flavor Substances in Tibetan Air-dried Yak Meat Jerky during the Simulated Processing[J]. Science and Technology of Food Industry, 2021, 42(2): 19-25. DOI: 10.13386/j.issn1002-0306.20200301018
    [6]YUAN Qin-qin, LIU Wen-ying. Taste and Flavor Characteristics of Peony Flower Tea under Different Soaking Methods[J]. Science and Technology of Food Industry, 2020, 41(21): 273-280. DOI: 10.13386/j.issn1002-0306.2020020195
    [7]ZHANG Kang-yi, HE Meng-ying, GUO Dong-xu, SONG Fan-fan, GAO Ling-ling, WANG Meng-xi. Effects of different drying methods on quality and volatile components of Nianzhuan[J]. Science and Technology of Food Industry, 2018, 39(2): 75-80,85. DOI: 10.13386/j.issn1002-0306.2018.02.015
    [8]LI Xing, BU Li-jun, ZHANG Xiao-chun, XIE Hua-dong, ZHONG Zheng-ze. Effects of microwave sterilization on volatile flavor compounds of spiced goose meat[J]. Science and Technology of Food Industry, 2017, (14): 97-100. DOI: 10.13386/j.issn1002-0306.2017.14.019
    [9]TANG Qiu-shi, CHEN Zhi-yi, LIU Xue-ming, YANG Chun-ying, WANG Si-yuan, LIN Yao-sheng. Influence of drying methods on volatile components of Flammulina velutipe[J]. Science and Technology of Food Industry, 2015, (10): 119-124. DOI: 10.13386/j.issn1002-0306.2015.10.016
    [10]CHEN Yi- ying, GUO Bei- bei, ZHANG Hui- ying, ZHANG Yu- yu, CHEN Hai-tao, SUN Bao-guo, XIE Jian-chun. Volatile flavor compounds analysis of the dapanji by GC- MS[J]. Science and Technology of Food Industry, 2014, (21): 291-296. DOI: 10.13386/j.issn1002-0306.2014.21.054
  • Cited by

    Periodical cited type(3)

    1. 李颜博,杜庆萍,杨瑞,李薇,张路思,宋安康,李玮,李学文,王伟. 沙棘原浆关键加工环节品质动态变化. 江苏农业学报. 2025(02): 362-371 .
    2. 陈亦辉,陈伟,尚海涛,王建成. 我国水蜜桃种质、保鲜贮运和加工技术研究进展. 浙江万里学院学报. 2024(02): 81-89 .
    3. 翟若涵,张全艳,陈翠榕,高云燕. 桃果实保鲜技术研究综述. 南方农业. 2024(04): 179-181 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return