WU Meijia, SHE Seng, LI Hongxia, et al. Study on the Changes of Main Ingredients of Acacia Honey during the Ripening Process Based on Clustering Analysis and Principal Component Analysis[J]. Science and Technology of Food Industry, 2021, 42(24): 112−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070304.
Citation: WU Meijia, SHE Seng, LI Hongxia, et al. Study on the Changes of Main Ingredients of Acacia Honey during the Ripening Process Based on Clustering Analysis and Principal Component Analysis[J]. Science and Technology of Food Industry, 2021, 42(24): 112−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070304.

Study on the Changes of Main Ingredients of Acacia Honey during the Ripening Process Based on Clustering Analysis and Principal Component Analysis

More Information
  • Received Date: July 25, 2021
  • Available Online: October 22, 2021
  • In order to explore the changes in nutritional ingredients of honey during the natural ripening process, the contents of moisture, monosaccharide, disaccharide, 9 kinds of oligosaccharides and 18 kinds of polyphenols in acacia honey were determined by the Abbe refractometer, high performance liquid chromatography(HPLC), gas chromatography-mass spectrometry(GC-MS) and high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS), respectively, combined with hierarchical cluster analysis(HCA) and principal component analysis(PCA) to distinguish acacia honey during different ripening days. The results showed that during the ripening process of acacia honey, the contents of moisture, oligosaccharides and polyphenols changed significantly. Among them, the contents of moisture, kestose, and melezitose decreased by 5.77, 0.09, and 3.47 g/100 g, respectively, while maltulose, turanose, erlose, and isomaltose increased 0.85, 1.65, 2.43, and 0.25 g/100 g, respectively. For the polyphenols, the contents of rutin, kaempferol, protocatechuic acid, and p-hydroxybenzoic acid generally increased; gallic acid, morin, ferulic acid, galangin, caffeic acid phenethyl ester, caffeic acid, and chrysin increased first and then decreased; benzoic acid and p-coumaric acid decreased first and then increased. In addition, the contents of melezitose under different ripening days of acacia honey were reduced significantly(P<0.05), while p-hydroxybenzoic acid and caffeic acid increased significantly(P<0.05), which could be used as potential characteristic indexes for judging the ripeness of acacia honey. The chemometrics analysis results showed that oligosaccharides and polyphenols could obviously distinguish acacia honey during the different ripening days.
  • [1]
    DA SILVA P M, GAUCHE C, GONZAGA L V, et al. Honey: Chemical composition, stability and authenticity[J]. Food Chemistry,2016,196:309−323. doi: 10.1016/j.foodchem.2015.09.051
    [2]
    ALQARNI A S, OWAYSS A A, MAHMOUD A A. Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia[J]. Arabian Journal of Chemistry,2012,9(1):114−120.
    [3]
    GARCIA-GONZALEZ M, MINGUET-LOBATO, PLOU F J, et al. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars[J]. Microbial Cell Factories, 19(1): 140.
    [4]
    RANNEH Y, AKIM A M, HAMID H A, et al. Honey and its nutritional and anti-inflammatory value[J]. BMC Complement Medicine Therapies,2021,21:30. doi: 10.1186/s12906-020-03170-5
    [5]
    CIANCIOSI D, FORBES-HERNANDEA, TAMARA Y, et al. The influence of in vitro gastrointestinal digestion on the anticancer activity of manuka honey[J]. Antioxidants,2020,9(1):64. doi: 10.3390/antiox9010064
    [6]
    MAJKUT M, KWIECINSKA-PIROG J, WSZELACZYNSKA E, et al. Antimicrobial activity of heat-treated Polish honeys[J]. Food Chemistry,2020:128561.
    [7]
    ESCUREDO O, DOBRE I, FERNANDEZ-GONZALEZ M, et al. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon[J]. Food Chemistry,2013,149:84−90.
    [8]
    WHITE J W. Honey[J]. Advances in Food Research,1978,24:287−374.
    [9]
    张然, 孙德鹏, 田洪芸, 等. 山东地区成熟/未成熟洋槐蜂蜜中酚类物质比较[J]. 食品与发酵工业,2018,44(5):256−258. [ZHANG R, SUN D P, TIAN H Y, et al. Comparative study about phenolic components between mature and immature acacia honey collected in Shandong area[J]. Food and Fermentation Industries,2018,44(5):256−258.
    [10]
    ADRIANA C, SZABO E, BORBELY M, et al. Comparative study of acacia and rape honey[J]. Analele Universității din Oradea, Fascicula:Ecotoxicologie, Zootehnie și Tehnologii de Industrie Alimentară,2012,11:325−332.
    [11]
    迟韵阳. 蜂蜜成熟过程中糖的变化及油菜蜜腺分泌蔗糖的分子机制[D]. 南昌: 南昌大学, 2020.

    CHI Y Y. Changes of carbohydrates during the ripening of honey and molecular mechanism of sucrose secretion in Brassica napus nectary[D]. Nanchang: Nanchang University, 2020.
    [12]
    马天琛. 成熟洋槐蜜的鉴别方法及其生物活性研究[D]. 西安: 西北大学, 2020.

    MA T C. Studies on the identification me-thod and biological activity of mature acacia honey[D]. Xi'an: Northwest University, 2020.
    [13]
    GISMONDI A, DE ROSSI S, CANUTI L, et al. From Robinia pseudoacacia L. nectar to Acacia monofloral honey: Biochemical changes and variation of biological properties[J]. Journal of the Science of Food and Agriculture,2018,98(11):4312−4322. doi: 10.1002/jsfa.8957
    [14]
    CUNNIF C, HORWITZ W, LATIMER G W. Official method of analysis of AOAC international[J]. Trends in Food Science & Technology,2000,6(11):382.
    [15]
    HEINZ-DIETER I, DANIELA S, BRANKA R, et al. Alternatives to official analytical methods used for the water determination in honey[J]. Food Control,2001,12(7):459−466. doi: 10.1016/S0956-7135(01)00044-5
    [16]
    国家食品药品监督管理总局. GB 5009.8-2016. 食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定[S]. 北京: 中国标准出版社, 2016.

    State Food and Drug Administration. GB 5009.8-2016. National food safety standards. The determination of fructose, glucose, sucrose, maltose contents in food[S]. Beijing: China Standards Press, 2016.
    [17]
    SHE S, CHEN L Z, SONG H B, et al. Discrimination of geographical origins of Chinese acacia honey using complex(13)C/(12)C, oligosaccharides and polyphenols[J]. Food Chemistry,2019,272:580−585. doi: 10.1016/j.foodchem.2018.07.227
    [18]
    TANLEQUE-ALBERTO F, ESCRICHE I. Antioxidant characteristics of honey from Mozambique based on specific flavonoids and phenolic acid compounds[J]. Journal of Food Composition and Analysis,2019,86:103377.
    [19]
    DITTGEN C L, HOFFMANN J F, CHAVES F C, et al. Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics[J]. Food Chemistry,2019,288:297−305. doi: 10.1016/j.foodchem.2019.03.006
    [20]
    于泽浩. 蜂蜜成熟过程中成分变化的研究[D]. 福州: 福建农林大学, 2017.

    YU Z H. Research on the changes of components in honey during ripening[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
    [21]
    KARABAGIAS I K, BADEKA A, KONTAKOS S, et al. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics[J]. Food Chemistry,2014,146:548−557. doi: 10.1016/j.foodchem.2013.09.105
    [22]
    PARVANOV P, DINKOV D, TANANAKI C. Invertase activity and carbohydrate spectrum of organic acacia and polyfloral honey after one-year storage[J]. Bulgarian Journal of Veterinary Medicine,2012,15(3):198−205.
    [23]
    TRUCHADO P, FERRERES F, BORTOLOTTI L, et al. Nectar flavonol rhamnosides are floral markers of acacia(Robinia pseudacacia) honey[J]. Journal of Agricultural & Food Chemistry,2008,56(19):8815−8824.
    [24]
    ELAMINE Y, LYOUSSI B, MIGUEL M G, et al. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate[J]. Food Chemistry,2021,339:128098. doi: 10.1016/j.foodchem.2020.128098
    [25]
    CIANCIOSI D, FORBES-HERNANDEZ T Y, ANSARY J, et al. Phenolic compounds from Mediterranean foods as nutraceutical tools for the prevention of cancer: The effect of honey polyphenols on colorectal cancer stem-like cells from spheroids[J]. Food Chemistry,2020,325:126881. doi: 10.1016/j.foodchem.2020.126881
    [26]
    PAULIUC D, DRANCA F, OROIAN M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication[J]. Foods,2020,9(3):306. doi: 10.3390/foods9030306
    [27]
    SULEIMAN M H A, ALAERJAN W M A, AHAMED MOHAMMED M E. Influence of altitudinal variation on the total phenolic and flavonoid content of Acacia and Ziziphus honey[J]. International Journal of Food Properties,2020,23(1):2077−2086. doi: 10.1080/10942912.2020.1842445
    [28]
    COSTA R A C, CRUZ-LANDIM C D. Enzymatic activity of hypopharyngeal gland extracts from workers of Apis mellifera (Hymenoptera, Apidae, Apinae)[J]. Sociobiology,2002,40(2):403−411.
    [29]
    KUBOTA M, TSUJI M, NISHIMOTO M, et al. Localization of α-glucosidases I, II, and III in organs of European honeybees, Apis mellifera L., and the origin of α-glucosidase in honey[J]. Bioscience, Biotechnology and Biochemistry,2004,68(11):2346−2352. doi: 10.1271/bbb.68.2346
    [30]
    YAYINIE M, ATLABACHEW M, TESFAYE A, et al. Quality authentication and geographical origin classification of honey of Amhara region, Ethiopia based on physicochemical parameters[J]. Arabian Journal of Chemistry,2021,14:102987. doi: 10.1016/j.arabjc.2021.102987
    [31]
    ABDI H, WILLIAMS L J, VALENTIN D. Multiple factor analysis: Principal component analysis for multitable and multiblock data sets[J]. Wiley Interdisciplinary Reviews Computational Statistics,2013,5(2):149−179. doi: 10.1002/wics.1246
  • Related Articles

    [1]PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230
    [2]KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273
    [3]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [4]Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120
    [5]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [6]LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148
    [7]ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205
    [8]Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197
    [9]Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339
    [10]GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072
  • Cited by

    Periodical cited type(13)

    1. 陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
    2. 雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
    3. 张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
    4. 杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
    7. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    8. 余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
    9. 张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
    10. 张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
    11. 付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
    12. 岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
    13. Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (237) PDF downloads (40) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return