Citation: | WU Meijia, SHE Seng, LI Hongxia, et al. Study on the Changes of Main Ingredients of Acacia Honey during the Ripening Process Based on Clustering Analysis and Principal Component Analysis[J]. Science and Technology of Food Industry, 2021, 42(24): 112−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070304. |
[1] |
DA SILVA P M, GAUCHE C, GONZAGA L V, et al. Honey: Chemical composition, stability and authenticity[J]. Food Chemistry,2016,196:309−323. doi: 10.1016/j.foodchem.2015.09.051
|
[2] |
ALQARNI A S, OWAYSS A A, MAHMOUD A A. Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia[J]. Arabian Journal of Chemistry,2012,9(1):114−120.
|
[3] |
GARCIA-GONZALEZ M, MINGUET-LOBATO, PLOU F J, et al. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars[J]. Microbial Cell Factories, 19(1): 140.
|
[4] |
RANNEH Y, AKIM A M, HAMID H A, et al. Honey and its nutritional and anti-inflammatory value[J]. BMC Complement Medicine Therapies,2021,21:30. doi: 10.1186/s12906-020-03170-5
|
[5] |
CIANCIOSI D, FORBES-HERNANDEA, TAMARA Y, et al. The influence of in vitro gastrointestinal digestion on the anticancer activity of manuka honey[J]. Antioxidants,2020,9(1):64. doi: 10.3390/antiox9010064
|
[6] |
MAJKUT M, KWIECINSKA-PIROG J, WSZELACZYNSKA E, et al. Antimicrobial activity of heat-treated Polish honeys[J]. Food Chemistry,2020:128561.
|
[7] |
ESCUREDO O, DOBRE I, FERNANDEZ-GONZALEZ M, et al. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon[J]. Food Chemistry,2013,149:84−90.
|
[8] |
WHITE J W. Honey[J]. Advances in Food Research,1978,24:287−374.
|
[9] |
张然, 孙德鹏, 田洪芸, 等. 山东地区成熟/未成熟洋槐蜂蜜中酚类物质比较[J]. 食品与发酵工业,2018,44(5):256−258. [ZHANG R, SUN D P, TIAN H Y, et al. Comparative study about phenolic components between mature and immature acacia honey collected in Shandong area[J]. Food and Fermentation Industries,2018,44(5):256−258.
|
[10] |
ADRIANA C, SZABO E, BORBELY M, et al. Comparative study of acacia and rape honey[J]. Analele Universității din Oradea, Fascicula:Ecotoxicologie, Zootehnie și Tehnologii de Industrie Alimentară,2012,11:325−332.
|
[11] |
迟韵阳. 蜂蜜成熟过程中糖的变化及油菜蜜腺分泌蔗糖的分子机制[D]. 南昌: 南昌大学, 2020.
CHI Y Y. Changes of carbohydrates during the ripening of honey and molecular mechanism of sucrose secretion in Brassica napus nectary[D]. Nanchang: Nanchang University, 2020.
|
[12] |
马天琛. 成熟洋槐蜜的鉴别方法及其生物活性研究[D]. 西安: 西北大学, 2020.
MA T C. Studies on the identification me-thod and biological activity of mature acacia honey[D]. Xi'an: Northwest University, 2020.
|
[13] |
GISMONDI A, DE ROSSI S, CANUTI L, et al. From Robinia pseudoacacia L. nectar to Acacia monofloral honey: Biochemical changes and variation of biological properties[J]. Journal of the Science of Food and Agriculture,2018,98(11):4312−4322. doi: 10.1002/jsfa.8957
|
[14] |
CUNNIF C, HORWITZ W, LATIMER G W. Official method of analysis of AOAC international[J]. Trends in Food Science & Technology,2000,6(11):382.
|
[15] |
HEINZ-DIETER I, DANIELA S, BRANKA R, et al. Alternatives to official analytical methods used for the water determination in honey[J]. Food Control,2001,12(7):459−466. doi: 10.1016/S0956-7135(01)00044-5
|
[16] |
国家食品药品监督管理总局. GB 5009.8-2016. 食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定[S]. 北京: 中国标准出版社, 2016.
State Food and Drug Administration. GB 5009.8-2016. National food safety standards. The determination of fructose, glucose, sucrose, maltose contents in food[S]. Beijing: China Standards Press, 2016.
|
[17] |
SHE S, CHEN L Z, SONG H B, et al. Discrimination of geographical origins of Chinese acacia honey using complex(13)C/(12)C, oligosaccharides and polyphenols[J]. Food Chemistry,2019,272:580−585. doi: 10.1016/j.foodchem.2018.07.227
|
[18] |
TANLEQUE-ALBERTO F, ESCRICHE I. Antioxidant characteristics of honey from Mozambique based on specific flavonoids and phenolic acid compounds[J]. Journal of Food Composition and Analysis,2019,86:103377.
|
[19] |
DITTGEN C L, HOFFMANN J F, CHAVES F C, et al. Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics[J]. Food Chemistry,2019,288:297−305. doi: 10.1016/j.foodchem.2019.03.006
|
[20] |
于泽浩. 蜂蜜成熟过程中成分变化的研究[D]. 福州: 福建农林大学, 2017.
YU Z H. Research on the changes of components in honey during ripening[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
|
[21] |
KARABAGIAS I K, BADEKA A, KONTAKOS S, et al. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics[J]. Food Chemistry,2014,146:548−557. doi: 10.1016/j.foodchem.2013.09.105
|
[22] |
PARVANOV P, DINKOV D, TANANAKI C. Invertase activity and carbohydrate spectrum of organic acacia and polyfloral honey after one-year storage[J]. Bulgarian Journal of Veterinary Medicine,2012,15(3):198−205.
|
[23] |
TRUCHADO P, FERRERES F, BORTOLOTTI L, et al. Nectar flavonol rhamnosides are floral markers of acacia(Robinia pseudacacia) honey[J]. Journal of Agricultural & Food Chemistry,2008,56(19):8815−8824.
|
[24] |
ELAMINE Y, LYOUSSI B, MIGUEL M G, et al. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate[J]. Food Chemistry,2021,339:128098. doi: 10.1016/j.foodchem.2020.128098
|
[25] |
CIANCIOSI D, FORBES-HERNANDEZ T Y, ANSARY J, et al. Phenolic compounds from Mediterranean foods as nutraceutical tools for the prevention of cancer: The effect of honey polyphenols on colorectal cancer stem-like cells from spheroids[J]. Food Chemistry,2020,325:126881. doi: 10.1016/j.foodchem.2020.126881
|
[26] |
PAULIUC D, DRANCA F, OROIAN M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication[J]. Foods,2020,9(3):306. doi: 10.3390/foods9030306
|
[27] |
SULEIMAN M H A, ALAERJAN W M A, AHAMED MOHAMMED M E. Influence of altitudinal variation on the total phenolic and flavonoid content of Acacia and Ziziphus honey[J]. International Journal of Food Properties,2020,23(1):2077−2086. doi: 10.1080/10942912.2020.1842445
|
[28] |
COSTA R A C, CRUZ-LANDIM C D. Enzymatic activity of hypopharyngeal gland extracts from workers of Apis mellifera (Hymenoptera, Apidae, Apinae)[J]. Sociobiology,2002,40(2):403−411.
|
[29] |
KUBOTA M, TSUJI M, NISHIMOTO M, et al. Localization of α-glucosidases I, II, and III in organs of European honeybees, Apis mellifera L., and the origin of α-glucosidase in honey[J]. Bioscience, Biotechnology and Biochemistry,2004,68(11):2346−2352. doi: 10.1271/bbb.68.2346
|
[30] |
YAYINIE M, ATLABACHEW M, TESFAYE A, et al. Quality authentication and geographical origin classification of honey of Amhara region, Ethiopia based on physicochemical parameters[J]. Arabian Journal of Chemistry,2021,14:102987. doi: 10.1016/j.arabjc.2021.102987
|
[31] |
ABDI H, WILLIAMS L J, VALENTIN D. Multiple factor analysis: Principal component analysis for multitable and multiblock data sets[J]. Wiley Interdisciplinary Reviews Computational Statistics,2013,5(2):149−179. doi: 10.1002/wics.1246
|
[1] | PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230 |
[2] | KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273 |
[3] | YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073 |
[4] | Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120 |
[5] | LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054 |
[6] | LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148 |
[7] | ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205 |
[8] | Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197 |
[9] | Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339 |
[10] | GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072 |
1. |
陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
![]() | |
2. |
雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
![]() | |
3. |
张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
![]() | |
4. |
杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
![]() | |
5. |
何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
![]() | |
6. |
张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
![]() | |
7. |
陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 .
![]() | |
8. |
余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
![]() | |
9. |
张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
![]() | |
10. |
张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
![]() | |
11. |
付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
![]() | |
12. |
岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
![]() | |
13. |
Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .
![]() |