WANG Yunru, CAI Qiuxing, ZHANG Chenxiao, et al. Analysis and Evaluation of Protein and Amino Acid Nutrition of Three Common Oysters in Beibu Gulf[J]. Science and Technology of Food Industry, 2022, 43(7): 310−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070302.
Citation: WANG Yunru, CAI Qiuxing, ZHANG Chenxiao, et al. Analysis and Evaluation of Protein and Amino Acid Nutrition of Three Common Oysters in Beibu Gulf[J]. Science and Technology of Food Industry, 2022, 43(7): 310−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070302.

Analysis and Evaluation of Protein and Amino Acid Nutrition of Three Common Oysters in Beibu Gulf

More Information
  • Received Date: July 25, 2021
  • Available Online: February 09, 2022
  • The purpose of this study was to explore the differences of protein and amino acid content, protein nutritional value and comprehensive quality evaluation based on amino acid content of three common oysters, Crassostrea sikamea, Crassostrea hongkongensis and Crassostrea ariakensis in Beibu Gulf. The content of protein in oyster was determined by national standard, and the composition and content of amino acids in oyster were determined by high performance liquid chromatography. The nutritional value of protein was evaluated, and the composition and content of amino acids in oyster were used as indexes for principal component analysis (PCA). The results showed the crude protein content (in dry basis) of Crassostrea sikamea, Crassostrea hongkongensis and Crassostrea ariakensis in Beibu Gulf was 43.47~49.27 g/100 g, and there were significantly differences among the three species. 17 kinds of amino acids were detected in three kinds of oysters, and the essential amino acids accounted for 30.95%~37.39% of the total amino acids, among which the essential amino acid composition of Crassostrea sikamea conformed to the ideal model recommended by FAO/WHO. The nutritional value of oyster protein was evaluated by amino acid score and chemical score. The results showed that Crassostrea sikamea and Crassostrea hongkongensis were more than 1 in AAS, the first limiting amino acid of Crassostrea ariakensis was leucine, the first limiting amino acid of Crassostrea sikamea and Crassostrea hongkongensis in CS was methionine+cysteine, and Crassostrea ariakensis was leucine. The protein nutritional value of oyster was evaluated by amino acid ratio coefficient, it was found that the protein nutritional value of Crassostrea sikamea was the highest among the three kinds of oysters, followed by Crassostrea hongkongensis and Crassostrea ariakensis. In PCA analysis, the cumulative contribution rate of the two principal components extracted was 90.463%, which could better summarize the comprehensive information of 17 amino acid evaluation indexes. The comprehensive score of the three oysters was Crassostrea sikamea>Crassostrea hongkongensis>Crassostrea ariakensis. This study provides a scientific reference for the development and breeding of three common oysters in the Beibu Gulf.
  • [1]
    张国范, 李莉, 阙华勇. 中国牡蛎产业的嬗变——新认知、新品种和新产品[J]. 海洋与湖沼,2020,51(4):740−749. [ZHANG G F, LI L, QUE H Y. An evolution of oyster mariculture industry in china: New knowledge, variety and product[J]. Oceanologia et Limnologia Sinica,2020,51(4):740−749. doi: 10.11693/hyhz20200300092
    [2]
    DAVID L J V, ABHIJEET S, LUCA T, et al. Mining the transcriptomes of four commercially important shellfish species for sin-gle nucleotide polymorphisms within biomineralization genes[J]. Ma-rine Genomics,2016,27(7):17−23.
    [3]
    GUO X. Use and exchange of genetic resources in molluscan aquaculture[J]. Reviews in Aquaculture,2009,1(3-4):251−259. doi: 10.1111/j.1753-5131.2009.01014.x
    [4]
    农业农村部渔业渔政管理局. 2020中国渔业年鉴[M]. 北京: 中国农业出版社, 2020: 23−27.

    Fishery Administration Bureau of Ministry of Agriculture and Rural Areas. China fisheries yearbook 2020[M]. Beijing: China Agricuture Press, 2020: 23−27.
    [5]
    李坚明, 刘坚红. 广西近江牡蛎产业发展现状与对策[J]. 中国水产,2008,389(4):82−83. [LI J M, LIU J H. Present situation and countermeasures of Crassostrea ariakensis industry development in Guangxi[J]. China Fisheries,2008,389(4):82−83. doi: 10.3969/j.issn.1002-6681.2008.04.011
    [6]
    宋忠魁, 蔡小辉, 童潼, 等. 广西茅尾海常见牡蛎的分子鉴定[J]. 海洋科学,2010,34(8):11−16. [SONG Z K, CAI X H, TONG T, et al. Molecular identification of the common oysters from the Maowei sea in Guangxi, China[J]. Marine Sciences,2010,34(8):11−16.
    [7]
    WANG H, QIAN L, WANG A, et al. Occurrence and distribution of Crassostrea sikamea (Amemiya 1928) in China[J]. Journal of Shellfish Research,2013,32(2):439−446. doi: 10.2983/035.032.0224
    [8]
    国家贝类产业技术体系. 中国牡蛎产业发展报告[J]. 中国水产,2021(6):20−31. [National Shellfish Industry Technology System. China's oyster industry development report[J]. China Fisheries,2021(6):20−31.
    [9]
    LIU S, XU H Q, JIAN S S, et al. Molecular basis of taste and micronutrient content in Kumamoto oysters (Crassostrea sikamea) and Portuguese oysters (Crassostrea angulata) from Xiangshan bay[J]. Frontiers in Physiology,2021,12:713736. doi: 10.3389/fphys.2021.713736
    [10]
    方玲, 马海霞, 李来好, 等. 华南地区近江牡蛎营养成分分析及评价[J]. 食品工业科技,2018,39(2):301−307, 313. [FANG L, MA H X, LI L H, et al. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry,2018,39(2):301−307, 313.
    [11]
    刘雁飞. 大连湾牡蛎热风干制过程中大学的变化与控制[D]. 大连: 大连工业大学, 2019.

    LIU Y F. Change and its control of lipids in oyster (Crassostrea talienwhanensis) during hot air drying process[D]. Dalian: Dalian Polytechnic University, 2019.
    [12]
    任爱景, 杨正勇, 戴亚娟, 等. 我国水产品需求预测研究[J]. 上海海洋大学学报,2012,21(1):145−150. [REN A J, YANG Z Y, DAI Y J, et al. Research on aquatic product demand forecasting in China[J]. Journal of Shanghai Ocean University,2012,21(1):145−150.
    [13]
    JORDAN M G, ERICA N M, NICK T B. Dietary protein and amino acid intake: Links to the maintenance of cognitive health[J]. Nutrients,2019,11(6):1315. doi: 10.3390/nu11061315
    [14]
    刘纪成, 张敏, 陈培荣, 等. 茶园放养固始鸡与贵妃鸡肌肉氨基酸和脂肪酸含量比较[J]. 畜牧与兽医,2020,52(10):39−44. [LIU J C, ZHANG M, CHEN P R, et al. Comparison of amino acid and fatty acid composition in muscle between Gushi chickens and Royal chickens under scattered feeding in tea plantation[J]. Animal Husbandry & Veterinary Medicine,2020,52(10):39−44.
    [15]
    FAO/WHO Ad Hoc Expert Committee. Energy and protein requirements[M]. Geneva: FAO Nutrition Meeting Report Series, 1973, 52: 40−73.
    [16]
    中国预防医学科学院营养与食品卫生研究所. 食物成分表(全国代表值) [M]. 北京: 人民卫生出版社, 1991: 30−82.

    Institute for Nutrition and Food Safety of the Chinese Center for Disease Control and Prevention. Food composition table (national representative value)[M]. Beijing: People's Medical Publishing House, 1991: 30−82.
    [17]
    朱圣陶, 吴坤. 蛋白质营养价值评价——氨基酸比值系数法[J]. 营养学报,1998,10(2):187−190. [ZHU S T, WU K. Nutritional evaluation of protein-amino acid ratio coefficient[J]. Acta Nutrimenta Sinica,1998,10(2):187−190.
    [18]
    黄艳球, 杨发明, 秦小明, 等. 不同养殖区香港牡蛎的化学组成及特征气味成分分析[J]. 食品科学,2019,40(14):236−242. [HUANG Y Q, YANG F M, QIN X M, et al. Chemical composition and characteristic odorans of oyster (Crassostrea hongkongensis) from different culture areas[J]. Food Science,2019,40(14):236−242. doi: 10.7506/spkx1002-6630-20180822-239
    [19]
    QIN Y P, ZHANG Y H, MA H T, et al. Comparison of the biochemical composition and nutritional quality between diploid and triploid Hongkong oysters, Crassostrea hongkongensis[J]. Frontiers in Physiology,2018,26(9):1674.
    [20]
    黄高凌, 王衍庆. 花蛤净化前后主要营养成分及鲜味氨基酸的比较[J]. 食品科学,2006,27(10):477−480. [HUANG G L, WANG Y Q. Comparison of nutritious constituents and tasty amino acids of bivalve hemolymph both before and after purification[J]. Food Science,2006,27(10):477−480. doi: 10.3321/j.issn:1002-6630.2006.10.120
    [21]
    刘婷婷, 邢青斌, 程家丽, 等. 青稞中氨基酸含量的测定分析及评价[J]. 卫生研究,2019,48(2):284−288. [LIU T T, XING Q B, CHENG J L, et al. Determination of amino acids in hulless barley[J]. Journal of Hygiene Research,2019,48(2):284−288.
    [22]
    杨晴晴, 吴宏玉, 陈思予, 等. 高等植物中赖氨酸代谢调控及其关联效应研究进展[J]. 植物生理学报,2019,55(12):1737−1746. [YANG Q Q, WU H Y, CHEN S Y, et al. Research progress on lysine metabolism regulation and its related effects in higher plants[J]. Plant Physiology Journal,2019,55(12):1737−1746.
    [23]
    龚君俊. 中国健康青年男性赖氨酸需要量的研究[D]. 扬州: 扬州大学, 2012.

    GONG J J. Study on lysine requirement of healthy young men in China[J]. Yangzhou: Yangzhou University, 2012.
    [24]
    FLAIMA C, KOBA M, PIERROB A M D, et al. Effects of a whey protein supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: A pilot study[J]. The Journal of Nutritional Biochemistry,2017,50:95−102. doi: 10.1016/j.jnutbio.2017.05.003
    [25]
    贾存江, 王英燕, 赵丽丽, 等. L-半胱氨酸的生产方法及应用进展[J]. 齐鲁药事,2007,26(9):553−555. [JIA C J, WANG Y Y, ZHAO L L, et al. Progress in production method and application of L-cysteine[J]. Journal of Pharmaceutical Research,2007,26(9):553−555.
    [26]
    陈跃文, 蔡文强, 祁立波, 等. 俄罗斯鲟鱼不同部位肌肉营养组成分析与评价[J]. 中国食品学报,2019,19(8):286−293. [CHEN Y W, CAI W Q, QI L B, et al. Analysis and evaluation of nu-tritional components in the muscle of different parts of Russian sturgeon[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(8):286−293.
    [27]
    JIANG S S, LIU L, XU J J, et al. Amino acid composition and digestibility of Pacific oyster (Crassostrea gigas) proteins isolated from different parts[J]. LWT-Food Science and Technology,2019,116:108591. doi: 10.1016/j.lwt.2019.108591
    [28]
    李阅兵, 孙立春, 刘承初, 等. 几种海水和淡水贝类的大宗营养成分比较研究[J]. 上海海洋大学学报,2012,21(2):297−303. [LI Y B, SUN L C, LIU C C, et al. Comparison of macronutrient components of several marine and freshwater shellfish[J]. Journal of Shanghai Ocean University,2012,21(2):297−303.
    [29]
    张欢欢, 梁叶星, 张玲, 等. 双低油菜籽蛋白氨基酸组成分析及营养价值评价[J]. 食品与发酵工业,2019,45(12):235−241. [ZHANG H H, LIANG Y X, ZHANG L, et al. Amino acid composition and nutritional evaluation of double low rapeseed pro-teins[J]. Food and Fermentation Industries,2019,45(12):235−241.
  • Cited by

    Periodical cited type(20)

    1. 罗密,尹旺,郭崇韬,邓仁菊,付梅,包维嘉. 不同品种甘薯的淀粉结构与理化特性. 贵州农业科学. 2025(01): 10-17 .
    2. 罗密,尹旺,邓仁菊,关郁芳,潘牧,吴巧玉,付梅. 基于主成分分析和聚类分析对不同品种甘薯淀粉与粉条品质的综合评价. 食品工业科技. 2025(04): 246-257 . 本站查看
    3. 金喜龙,丁杨,王中利,孟新莉,李斌. 糯质高粱酿造凤香型白酒初探. 酿酒. 2025(02): 109-113 .
    4. 罗密,郭崇韬,关郁芳,尹旺,邓仁菊,包维嘉. 不同紫甘薯品种淀粉理化特性的比较分析. 粮食与油脂. 2025(04): 21-27+75 .
    5. 盛周杨,邹波,吴继军,肖更生,徐玉娟,余元善,陈晓维,钟思彦. 木薯淀粉和改性淀粉结构特性及其与粉圆品质的关系. 广东农业科学. 2024(01): 127-135 .
    6. 宋永,贾璐泽,张一婷,刘佳莉,刘大军,孙庆申. 金冠豆角籽粒淀粉组成及性质研究. 食品工业科技. 2024(07): 59-67 . 本站查看
    7. 莫祥秋,张明波,窦德强. 双波长法测定人参中淀粉含量. 中国现代中药. 2024(07): 1150-1156 .
    8. 冉腾飞,夏茹,李永鹏,高娅,杨才,黄安柱,田山君. 蔓薯并长期遮荫对商薯19淀粉加工品质及营养品质的影响. 山东农业科学. 2024(11): 44-51 .
    9. 胡方洋,邓健,张得祥,刘彩华,麦馨允,朱正杰. 凯特芒果淀粉的提取及其性质研究. 食品与生物技术学报. 2024(10): 163-172 .
    10. 赵灿,陶星宇,汤尚文,刘传菊,豁银强,张倩. 甘薯淀粉对山药凝胶肠理化特性的影响. 中国粮油学报. 2023(02): 58-65 .
    11. 陈炜璇,庄婉娴,吴迁迁,何恒涛,胡海茵,孙若欣,宋贤良. 紫米粉圆感官评价及质构特性的相关性分析. 食品与机械. 2023(03): 11-16+22 .
    12. 唐云,闫海彦,赵亚雄,郇丹,宗文文,宋菲红. 碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨. 食品工业科技. 2023(13): 272-280 . 本站查看
    13. 卜庆状,邹雪梅,郝晓莉,詹德江. 4种消除高粱直链淀粉测定中支链淀粉干扰的方法比较. 食品工业. 2023(06): 295-298 .
    14. 刘建垒,商博,邢晓婷,张东,常柳,孙辉,段晓亮. 4种方法测定小米直链淀粉含量的比较. 食品科学. 2023(12): 217-224 .
    15. 许鑫,王斌,崔波. 可生物降解改性淀粉基薄膜的特性及应用研究进展. 食品工业科技. 2023(15): 474-481 . 本站查看
    16. 王庆宇,周平,王贵军,倪靖岳,李徐森,钟帅,李威,罗明宇. 不同品种糯高粱酿造酱香型白酒对比研究. 中国酿造. 2023(08): 65-70 .
    17. 王立,殷剑美,韩晓勇,蒋璐,郭文琦,金林,张培通. 芋可溶性淀粉合成酶CeSS基因家族的克隆和表达分析. 江苏农业学报. 2023(04): 939-946 .
    18. 邹浩峰,廖雨华,黄师荣,隋勇,熊添,施建斌,蔡沙,蔡芳,梅新. 不同生物酶协同植物乳杆菌发酵对紫甘薯生全粉理化特性的影响. 中国粮油学报. 2023(08): 213-220 .
    19. 许丽蓉,李闯,刘洋,黄璇,张旭,邓萍,戴求仲,夏敏,蒋桂韬,范志勇. 稻谷对鹅的营养价值评定及代谢能预测. 动物营养学报. 2023(11): 7192-7200 .
    20. 赵令敏,张艳芳,邢丽南,葛明然,刘小燕,霍秀文. 山药异淀粉酶基因克隆及其在淀粉代谢中的作用. 西北植物学报. 2022(11): 1827-1834 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (508) PDF downloads (55) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return