WANG Pengbo, XIE Xiaorong, DAI Yunyun, et al. Optimization of Extraction Method of Lycium barbarum Flavonoids and the Correlation between Different Ecological Factors and Lycium barbarum Flavonoids[J]. Science and Technology of Food Industry, 2022, 43(6): 236−242. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070249.
Citation: WANG Pengbo, XIE Xiaorong, DAI Yunyun, et al. Optimization of Extraction Method of Lycium barbarum Flavonoids and the Correlation between Different Ecological Factors and Lycium barbarum Flavonoids[J]. Science and Technology of Food Industry, 2022, 43(6): 236−242. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070249.

Optimization of Extraction Method of Lycium barbarum Flavonoids and the Correlation between Different Ecological Factors and Lycium barbarum Flavonoids

More Information
  • Received Date: July 21, 2021
  • Available Online: January 13, 2022
  • Lycium barbarum flavone is the main effective component of Chinese medicinal material Lycium barbarum, and it is also the main evaluation index of its quality. This paper investigated the effects of ethanol reflux extraction, high-speed shear-assisted ethanol extraction, high-speed shear-assisted DESs extraction, and ultrasound-assisted DESs extraction on the extraction amount of Lycium barbarum flavonoids. The best extraction method was selected, and the best extraction conditions were obtained by single factor experiments and orthogonal experiment. Based on the best extraction method, SIMCA 14.1 was used. The software analyzed the correlation between the ecological factors in different producing areas and the content of Lycium barbarum flavonoids. The results showed that the extraction efficiency of Lycium barbarum flavonoids with high-speed shearing assisted DESs was the best, the optimal extraction process was as follows: Speed 14000 r/min, material-to-liquid ratio 1:20 g/mL, extraction time 5 min, the average flavonoid extraction volume was 7.11 mg/g. The flavonoid content of Lycium barbarum from different origins in descending order was: Ningxia Yinchuan>Ningxia Zhongwei>Gansu Guazhou>Ningxia Guyuan>Xinjiang Jinghe>Ningxia Zhongning>Gansu Baiyin>Gansu Wuwei>Gansu Yumen>Xinjiang Altai>Xinjiang Yining>Qinghai Dulan>Qinghai Golmud>South Korea b>South Korea a. SIMCA 14.1 Software analysis showed that the positive regression coefficient value of Lycium barbarum flavonoids content and temperature and frost-free period was the largest, and the absolute value of negative regression coefficient with altitude was the largest. The most important ecological factors affecting the content of Lycium barbarum flavonoids were temperature and frost-free period.
  • [1]
    国家药典委员会. 中华人民共和国药典[M]. 一部. 中国医药科技出版社, 2015: 232−233

    National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China[M]. One. China Medical Science and Technology Press, 2015: 232−233.
    [2]
    魏雪松, 王海洋, 孙智轩, 等. 宁夏枸杞化学成分及其药理活性研究进展[J]. 中成药,2018,40(11):2513−2520. [WEI X S, WANG H Y, SUN Z X, et al. Research progress on the chemical constituents and pharmacological activities of Ningxia Lycium barbarum[J]. Chinese Traditional Patent Medicine,2018,40(11):2513−2520. doi: 10.3969/j.issn.1001-1528.2018.11.029
    [3]
    ANDREI M, FRANCESCO C, MARCELLO L, et al. Polyphenols from Lycium barbarum (Goji) fruit european cultivars at different maturation steps: Extraction, HPLC-DAD analyses, and biological evaluation[J]. Antioxidants,2019,8:562. doi: 10.3390/antiox8110562
    [4]
    HARUNOBU A, FARNSWORTH N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji)[J]. Food Research International,2011,44(7):1702−1717. doi: 10.1016/j.foodres.2011.03.027
    [5]
    禄璐, 米佳, 罗青, 等. 枸杞总黄酮提取工艺优化及其体外抗氧化活性分析[J]. 食品工业科技,2019,40(24):165−171. [LU L, MI J, LUO Q, et al. Optimization of extraction technology of Lycium barbarum total flavonoids and analysis of its in vitro antioxidant activity[J]. Science and Technology of Food Industry,2019,40(24):165−171.
    [6]
    ZU M H, SONG H L, ZHANG J B, et al. Lycium barbarum lipid-based edible nanoparticles protect against experimental colitis[J]. Colloids and Surfaces B,2020,187:110747. doi: 10.1016/j.colsurfb.2019.110747
    [7]
    张东涛, 张旭, 郝秀静, 等. 宁夏枸杞总黄酮对人胃癌SGC-7901细胞增殖及细胞凋亡的影响[J]. 时珍国医国药,2014,25(11):2634−2637. [ZHANG D T, ZHANG X, HE X J, et al. Effects of Ningxia Lycium barbarum total flavonoids on the proliferation and apoptosis of human gastric cancer SGC-7901 cells[J]. Lishizhen Medicine and Materia Medica Research,2014,25(11):2634−2637.
    [8]
    钟建青, 李波, 贾琦, 等. 天然黄酮类化合物及其衍生物的构效关系研究进展[J]. 药学学报,2011,46(6):622−630. [ZHONG J Q, LI B, JIA Q, et al. Research progress in the structure-activity relationship of natural flavonoids and their derivatives[J]. Acta Pharmaceutica Sinica,2011,46(6):622−630.
    [9]
    刘元林, 龙鸣, 田晓静, 等. 枸杞黄酮超声波辅助提取工艺优化及枸杞品质综合判定[J]. 食品研究与开发,2019,40(21):88−94. [LIU Y L, LONG M, TIAN X J, et al. Optimization of ultrasonic-assisted extraction technology of Lycium barbarum flavonoids and comprehensive judgment of Lycium barbarum quality[J]. Food Research and Development,2019,40(21):88−94.
    [10]
    刘媛洁, 张良. 响应面法优化复合酶辅助超声波提取柚子皮总黄酮工艺[J]. 食品工业科技,2019,40(23):143−150. [LIU Y J, ZHANG L. Optimization of complex enzyme-assisted ultrasonic extraction of total flavonoids from grapefruit peel by response surface methodology[J]. Science and Technology of Food Industry,2019,40(23):143−150.
    [11]
    杨立风, 方双杰, 吴茂玉, 等. 微波辅助提取黑枸杞多酚及抗氧化活性研究[J]. 食品科技,2020,45(2):258−263, 271. [YANG L F, FANG S J, WU M Y, et al. Microwave-assisted extraction and antioxidant activity of black wolfberry polyphenols[J]. Food Science and Technology,2020,45(2):258−263, 271.
    [12]
    刘金铭, 王辉, 张欢, 等. 超声辅助低共熔溶剂萃取法在活性成分提取与食品分析预处理中应用的研究进展[J]. 食品工业科技,2021,42(7):399−407. [LIU J M, WANG H, ZHANG H, et al. Research progress in the application of ultrasonic-assisted eutectic solvent extraction in active ingredient extraction and food analysis pretreatment[J]. Science and Technology of Food Industry,2021,42(7):399−407.
    [13]
    史高峰, 李娜, 陈学福, 等. 微波辅助提取枸杞中的总黄酮工艺研究[J]. 广东化工,2010,37(4):40−42,63. [SHI G F, LI N, CHEN X F, et al. Microwave-assisted extraction of total flavonoids from Lycium barbarum[J]. Guangdong Chemical Industry,2010,37(4):40−42,63. doi: 10.3969/j.issn.1007-1865.2010.04.019
    [14]
    李丽, 卜令娜, 刘晔玮, 等. 高速剪切技术提取油菜蜂花粉总黄酮工艺[J]. 食品工业科技,2012,33(13):285−287,372. [LI L, BU L N, LIU Y W, et al. Extraction of total flavonoids from rape bee pollen by high-speed shearing technology[J]. Science and Technology of Food Industry,2012,33(13):285−287,372.
    [15]
    杜津昊. 枸杞活性物质提取及其生物活性研究[D]. 兰州: 兰州理工大学, 2017

    DU J H. Extraction of active substances from Lycium barbarum and its biological activity[D]. Lanzhou: Lanzhou University of Technology, 2017.
    [16]
    BUBALO M C, CURKO N, TOMASEVIC M, et al. Green extraction of grape skin phenolics by using deep eutectic solvents[J]. Food Chemistry,2016,200:159−166. doi: 10.1016/j.foodchem.2016.01.040
    [17]
    TIAN H Y, WANG J Q, LI Y J, et al. Recovery of natural products from deep eutectic solvents by mimicking denaturation[J]. ACS Sustainable Chem Eng,2019,7:9976−9983. doi: 10.1021/acssuschemeng.9b01012
    [18]
    MANSUR A R, SONG N, JANG H W, et al. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts[J]. Food Chemistry,2019,293:438−445. doi: 10.1016/j.foodchem.2019.05.003
    [19]
    BAJKACZ S, ADAMEK J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products[J]. Talanta,2017,168:329−335. doi: 10.1016/j.talanta.2017.02.065
    [20]
    陈冉, 李德慧, 阮桂发, 等. 基于绿色低共熔溶剂法高效提取鸡骨草中的黄酮和皂苷[J]. 天然产物研究与开发,2019,31(9):1632−1640. [CHEN R, LI D H, RUAN G F, et al. Efficient extraction of flavonoids and saponins from Cochinchinensis by the green eutectic solvent method[J]. Natural Products Research and Development,2019,31(9):1632−1640.
    [21]
    宁月宝, 王武, 张鹏翔, 等. 黑洋葱粗黄酮的提取及降血糖研究[J]. 食品科技,2017,42(8):212−214. [NING Y B, WANG W, ZHANG P X, et al. Extraction of crude flavonoids from black onion and research on lowering blood sugar[J]. Food Science and Technology,2017,42(8):212−214.
    [22]
    李桂兰, 贺智勇, 薛雨晨, 等. 闪式提取法用于大蝎子草总黄酮的工艺条件研究[J]. 中成药,2015,37(7):1603−1605. [LI G L, HE Z Y, XUE Y C, et al. Study on the technological conditions of flash extraction method for total flavonoids of Scorpion scorpioni[J]. Chinese Tradtional Patent Medcine,2015,37(7):1603−1605.
    [23]
    熊苏慧, 唐洁, 李诗卉, 等. 一种新型天然低共熔溶剂用于玉竹总黄酮的绿色提取[J]. 中草药,2018,49(10):2378−2386. [XIONG S H, TANG J, LI S H, et al. A new type of natural eutectic solvent for green extraction of total flavonoids from Polygonatum odoratum[J]. Chinese Traditional and Herbal Drugs,2018,49(10):2378−2386. doi: 10.7501/j.issn.0253-2670.2018.10.020
    [24]
    张霞. 低共熔溶剂在提取分离枸杞黄酮类化合物的应用研究[D]. 北京: 中国科学院大学, 2020

    ZHANG X. Applied research on extraction and separation of flavonoids from Lycium barbarum L. by deep eutectic solvents[D]. Beijing: University of Chinese Academy of Science, 2020.
    [25]
    裴栋, 张莉, 张君菡, 等. 同步提取锁阳总黄酮和多糖的工艺研究[J]. 时珍国医国药,2015,26(8):1851−1853. [PEI D, ZHANG L, ZHANG J H, et al. Study on the process of simultaneous extraction of total flavonoids and polysaccharides of Cynomorium[J]. Lishizhen Medicine and Materia Medica,2015,26(8):1851−1853.
    [26]
    DINH T V, SARAVANA P S, WOO H C, et al. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity[J]. Separation and Purification Technology,2018,196:287−299. doi: 10.1016/j.seppur.2017.06.009
  • Cited by

    Periodical cited type(9)

    1. 文舒瑶,郭宝松,梁悦琪,卫晓涵,陈映羲,纪超凡,张素芳. 水开菲尔粒中产酸菌株的筛选及其在无醇发酵麦芽汁中的应用. 食品与发酵工业. 2025(08): 60-67+76 .
    2. 严德林,黄雷,邱婧,陈世浪,梅芷晴,张凯旋,杨存义,高向阳. PB试验结合BBD响应面法优化纳豆γ-聚谷氨酸发酵条件. 食品工业科技. 2024(01): 208-215 . 本站查看
    3. 叶延欣,秦鹏,别鹏坤,张书斌,李蕾蕾,陈艳艳,张道雷. 纳豆芽孢杆菌Bacillus natto NK4液态发酵产纳豆激酶的工艺优化. 河南城建学院学报. 2024(02): 103-108+132 .
    4. 叶丽莎,高梦迪,程婉冰,庞凤萍,邓立高,李坚斌. 枯草芽孢杆菌产纳豆激酶的复合诱变选育及发酵条件优化. 应用化工. 2024(11): 2562-2568 .
    5. 王淼霜,仝艳军,蒋雨桥,杨瑞金. 苦荞对发酵豆乳纳豆激酶活力、风味及抗氧化活性的影响. 食品与生物技术学报. 2023(07): 62-71 .
    6. 王刚,王芝玉,安荣荣,滕玉婷,古梅,刘霞,高慧娟,董瑞丽. 固态发酵条件对纳豆激酶活性的影响及发酵条件的优化. 粮食加工. 2023(05): 33-37 .
    7. 陈俊煌. 纳豆激酶高产菌株的选育及其酶学活性研究. 生物化工. 2023(05): 152-155+159 .
    8. 高梦迪,苏钱琙,李杰,樊学晶,王朝阳,邓立高,李坚斌. 纳豆激酶微生物生产研究进展. 大豆科学. 2022(06): 740-746 .
    9. 余薇,邓小华,刘婷,潘笃杰,郑巧双. 一株益生型枯草芽孢杆菌液态发酵条件优化. 现代食品. 2022(20): 84-86 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (372) PDF downloads (36) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return