LV Dongcan, HOU Jingxia, JIANG Guangce, et al. Optimization and Antioxidant Activity of Flavonoid Extraction from Peanut Shell Assisted by Ball Milling[J]. Science and Technology of Food Industry, 2022, 43(8): 212−218. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070235.
Citation: LV Dongcan, HOU Jingxia, JIANG Guangce, et al. Optimization and Antioxidant Activity of Flavonoid Extraction from Peanut Shell Assisted by Ball Milling[J]. Science and Technology of Food Industry, 2022, 43(8): 212−218. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070235.

Optimization and Antioxidant Activity of Flavonoid Extraction from Peanut Shell Assisted by Ball Milling

More Information
  • Received Date: July 19, 2021
  • Available Online: February 17, 2022
  • Flavonoids in peanut hull were extracted by the ball milling method. The effects of solid-liquid ratio, ball milling time, and ethanol volume fraction on the extraction yield of flavonoids were investigated by single factor experiments. The Box-Behnken response surface methodology was used to optimize the extraction process, and the scavenging rate of superoxide free radical was also studied. The results showed that the optimal extraction conditions were as follows: Solid-liquid ratio of 1:25 g/mL, ball milling time of 60 min, and ethanol concentration of 60%, and the extraction yield of flavonoids could reach (32.1±0.13) mg/g. The scavenging capacity of superoxide free radicals was 53.53% when the concentration of flavonoids was 0.012 mmol/L. This work proved that ball milling was an effective extraction method and would provide the theoretical data support for further research.
  • [1]
    刘佳佳, 李崴一, 倪伟伟, 等. 花生壳乙醇提取物的脲酶抑制活性研究[J]. 天然产物研究与开发,2019,31(2):306−310. [LIU J J, LI W Y, NI W W, et al. Evaluation of peanut hull ethanol extract as an agent against urease[J]. Natural Product Research and Development,2019,31(2):306−310.
    [2]
    COLLINS J L, POST A R. Peanut hull flour as a potential source of dietary fiber[J]. Journal of Food Science,2010,46(2):445−448.
    [3]
    FU L, LIU Z, HUANG Y, et al. Square wave voltammetric quantitative determination of flavonoid luteolin in peanut hulls and Perilla based on Au NPs loaded boron nitride nanosheets[J]. Journal of Electroanalytical Chemistry,2018,817:128−133. doi: 10.1016/j.jelechem.2018.04.009
    [4]
    戚馨月, 田兴国, 汪海峰, 等. 花生壳乙醇提取物(EEPH)抗细菌作用差异性研究[J]. 中国调味品,2019,44(5):10−13. [QI X Y, TIAN X G, WANG H F, et al. Study on the difference of antibacterial effect of peanut shell ethanol extract (EEPH)[J]. Chinese Condiments,2019,44(5):10−13.
    [5]
    张斌, 孙兰萍, 伍亚华, 等. 花生壳总黄酮的大孔树脂吸附动力学研究[J]. 中国油脂,2017,42(3):122−126. [ZHANG B, SUN L P, WU Y H, et al. Adsorption kinetics of flavonoids from peanut hull by macroporous resin[J]. China's Oil,2017,42(3):122−126. doi: 10.3969/j.issn.1003-7969.2017.03.026
    [6]
    赵二劳, 杨洁, 赵三虎. 花生壳中黄酮类成分提取纯化工艺研究进展[J]. 中国粮油学报,2018,33(5):136−142. [ZHAO E L, YANG J, ZHAO S H. Research progress on extraction and purification technologies of flavonoids from peanut hull[J]. Journal of the Chinese Cereals and Oils Association,2018,33(5):136−142.
    [7]
    JAISINGHANI R N, MAKHWANA S, KANOJIA A J M R. Study on antibacterial and flavonoid content of ethanolic extract of Punica granatum (pomegranate) peel [J]. Microbiology Research, 2018, 9(1):
    [8]
    朱晓娜. CO2超临界流体, 闪式提取槐花和花生废弃物中有效成分工艺研究 [D]. 开封: 河南大学, 2012.

    ZHU X N. Study on the technology of flash extraction of effective components from Sophora japonica and peanut waste by CO2 supercritical fluid [D]. Kaifeng: Henan University, 2012.
    [9]
    ARAÚJO R G, RODRIGUEZ-JASSO R M, RUIZ H A, et al. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds[J]. Industrial Crops and Products,2020,154:112623. doi: 10.1016/j.indcrop.2020.112623
    [10]
    王璐. 花生果实荚壳中木犀草素的提取纯化、纳米粒制备及其稳定Pickering乳液的设计与研究 [D]. 哈尔滨: 东北林业大学, 2020.

    WANG L. Extraction and purification of luteolin from peanut pod shell, preparation of nanoparticles and design and study of its stable Pickering emulsion [D]. Harbin: Northeast Forestry University, 2020.
    [11]
    BI J, YANG Q, SUN J, et al. Study on ultrasonic extraction technology and oxidation resistance of total flavonoids from peanut hull [J]. Food Science & Technology Research, 2011, 17(3): 187−98.
    [12]
    BALARAMAN H B, SIVASUBRAMANIYAM A, RATHNASAMY S K. High selective purification of Quercetin from Peanut hull using protic deep eutectic mixture based liquid-liquid microextraction[J]. Microchemical Journal,2020,152:104444. doi: 10.1016/j.microc.2019.104444
    [13]
    MANZOOR M F, AHMAD N, AHMED Z, et al. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives[J]. Journal of Food Biochemistry,2019,43(9):e12974.
    [14]
    ZOU D, FAN R, HUANG X, et al. The optimization of ultrasonic extraction technology of total flavonoids in leaves of Mallotus apelta by response surface analysis methodology[J]. Medicinal Plant,2018,9(3):68−72.
    [15]
    HE R, WU K, ZHANG A, et al. Mechanochemical-assisted extraction and pharmacological study of triterpenoids from Antrodia camphorata[J]. Applied Sciences-Basel,2019,9(20):4281. doi: 10.3390/app9204281
    [16]
    EL-SAYED T H, ABOELNAGA A, EL-ATAWY M A, et al. Ball milling promoted N-heterocycles synthesis[J]. Molecules,2018,23(6):1348. doi: 10.3390/molecules23061348
    [17]
    AMUSAT S O, KEBEDE T G, DUBE S, et al. Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: A review[J]. Journal of Water Process Engineering,2021,41:101993. doi: 10.1016/j.jwpe.2021.101993
    [18]
    GE Q, LI P, LI C, et al. Optimization of soluble dietary fiber from ultrafine bamboo powder by ball milling and adsorption capacity of heavy metals[J]. Journal of Biobased Materials and Bioenergy,2021,15(2):244−252. doi: 10.1166/jbmb.2021.2045
    [19]
    LI H, WANG X, LIU C, et al. An efficient pretreatment for the selectively hydrothermal conversion of corncob into furfural: The combined mixed bail milling and ultrasonic pretreatments[J]. Industrial Crops and Products,2016,94:721−728. doi: 10.1016/j.indcrop.2016.09.052
    [20]
    XIE J, LIN Y S, SHI X J, et al. Mechanochemical-assisted extraction of flavonoids from bamboo (Phyllostachys edulis) leaves[J]. Industrial Crops and Products,2013,43:276−282. doi: 10.1016/j.indcrop.2012.07.041
    [21]
    TALEKAR S, PATTI A F, VIJAYRAGHAVAN R, et al. Rapid, enhanced and eco-friendly recovery of punicalagin from fresh waste pomegranate peels via aqueous ball milling[J]. Journal of Cleaner Production,2019,228:1238−1247. doi: 10.1016/j.jclepro.2019.04.392
    [22]
    赵星, 李云建, 韩伟, 等. 分光光度法测定花生壳中总黄酮含量的研究[J]. 食品工业科技,2019,40(10):269−273. [ZHAO X, LI Y J, HAN W, et al. Research on spectrophotometry for determination of total flavonoids content in peanut hulls[J]. Science and Technology of Food Industry,2019,40(10):269−273.
    [23]
    许晖, 孙兰萍, 张斌, 等. 响应面法优化花生壳黄酮提取工艺的研究[J]. 中国粮油学报,2009,24(1):107−111. [XU H, SUN L P, ZHANG B, et al. Optimization of extraction technique of flavonoids from peaut hull using response surface methodology[J]. Journal of The Chinese Cereals and Oils Association,2009,24(1):107−111.
    [24]
    陈仕学, 姚元勇, 卢忠英, 等. 邻苯三酚自氧化法对茶叶中茶多酚的抗氧化性能应用研究[J]. 食品研究与开发,2020,17:29−36. [CHEN S X, YAO Y Y, LU Z Y, et al. Study on the application of pyrogallol autoxidation method to the antioxidant activity of tea polyphenols[J]. Food Research and Development,2020,17:29−36.
    [25]
    延莎, 范亚芳, 郑龙华, 等. 乳酸菌发酵茶花粉所得提取物对 4 种自由基的清除能力[J]. 食品科技,2017,42(3):238−243. [YAN S, FAN Y F, ZHENG L H, et al. Scavenging ability of extracts from tea pollen fermented by lactic acid bacteria on four free radicals[J]. Food Technology,2017,42(3):238−243.
    [26]
    唐丽萍, 龚云麒, 吴小燕, 等. 不同产地花生壳中木犀草素的HPLC测定[J]. 花生学报,2005,34(2):1−4. [TANG L P, GONG Y Q, WU X Y, et al. HPLC determination of luteolin of peanut hull from different regions[J]. Journal of Peanut Science,2005,34(2):1−4. doi: 10.3969/j.issn.1002-4093.2005.02.001
    [27]
    陈建福. 响应面优化超声辅助提取黄槿叶总黄酮工艺及其亚硝酸盐清除能力[J]. 食品工业科技,2019,40(6):193−197,204. [CHEN J F. Optimization of ultrasonic-assisted extraction of total flavonoids from hibiscus syriacus leaves by response surface methodology and its nitrite scavenging ability[J]. Science and Technology of Food Industry,2019,40(6):193−197,204.
    [28]
    冯艺飞, 李文钊, 王兆燃, 等. 响应面法优化茵陈总黄酮提取工艺及成分结构的初步表征[J]. 食品工业科技,2019,40(21):192−197,215. [FENG Y F, LI W Z, WANG Z Y, et al. Optimization of extraction process and preliminary characterization of total flavonoids from Artemisia capillaris by response surface methodology[J]. Science and Technology of Food Industry,2019,40(21):192−197,215.
    [29]
    高林晓, 马文升, 石慧丽, 等. Box-Behnken模型优化水麻叶总黄酮提取工艺及抗氧化活性分析[J]. 食品工业科技,2021,42(12):184−190. [GAO L X, MA W S, SHI H L, et al. Optimization of extraction process and antioxidant activity analysis of total flavonoids from hemp leaves by Box-Behnken model[J]. Science and Technology of Food Industry,2021,42(12):184−190.
    [30]
    范金波, 周素珍, 郑立红, 等. 微波辅助提取花生壳总黄酮工艺参数的优化[J]. 中国食品学报,2013,13(11):55−60. [FAN J B, ZHOU S Z, CHENG L H, et al. Optimization of microwave-assisted extraction of total flavonoids from peanut shell[J]. Chinese Journal of Food Science,2013,13(11):55−60.
    [31]
    姜红宇, 谭捷雄, 殷素芳, 等. 花生壳中黄酮含量比较及工艺优化[J]. 食品研究与开发,2017,38(16):40−45. [JIANG H Y, TAN J X, YIN S F, et al. Contents comparatives and optimization of extraction technology of flavonoids of peanut hulls[J]. Food Research and Development,2017,38(16):40−45. doi: 10.3969/j.issn.1005-6521.2017.16.009
    [32]
    温志英, 刘焕云, 贝文敬. 响应面中心组合设计优化花生壳黄酮微波提取工艺[J]. 中国农学通报,2011,27(7):472−477. [WEN Z Y, LIU H Y, BEI W J. Optimization of microwave extraction technology of flavonoids from peanut hulls by response surface methodology[J]. Chinese Agricultural Science Bulletin,2011,27(7):472−477.
    [33]
    TRIPOLI E, GUARDIA M L, GIAMMANCO S, et al. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review[J]. Food Chemistry,2007,104(2):466−479. doi: 10.1016/j.foodchem.2006.11.054
    [34]
    赵鹏成. 蒸汽爆破预处理对花生壳黄酮组分的影响[D]. 洛阳: 河南科技大学, 2019.

    ZHAO P C. Effects of steam explosion on flavonoid components in Peanut shells [D]. Luoyang: Henan University of Science and Technology, 2019.
  • Cited by

    Periodical cited type(8)

    1. 许鑫雨,黄挺. 基于数据挖掘和网络药理学探讨中药内服方治疗癌性疼痛的用药规律及作用机制. 中医临床研究. 2025(01): 35-45 .
    2. 杨必乾,何昱洁,何慧明,邓毅. 甘草中三萜皂苷类成分抗肿瘤及联合抗肿瘤机制研究进展. 中医药导报. 2024(01): 106-110+116 .
    3. 卜晓芬,李骏,朱虹. 甘草甜素调节Notch信号通路对肝细胞癌细胞增殖、凋亡和侵袭的影响. 河北医药. 2024(22): 3370-3374 .
    4. 张尚龙,连小龙,张楠,叶礼巧,马趣环,邓毅. 甘草活性成分单独及联合西药抗肿瘤作用的研究进展. 联勤军事医学. 2023(02): 176-181 .
    5. 成圆,王宇加,王婷婷,丁淼,樊梓鸾. 几种典型天然甜味剂的功能活性及食品加工应用. 现代食品科技. 2023(08): 326-333 .
    6. 张尚龙,张楠,连小龙,叶礼巧,马趣环,邓毅. 甘草内生菌联合顺铂对A549细胞的增殖及凋亡的影响. 重庆医科大学学报. 2023(10): 1173-1179 .
    7. 连小龙,令颖,张尚龙,马趣环,闫潇,张楠,叶立巧,邓毅. 甘草有效成分抗肿瘤作用机制及联合抗肿瘤研究进展. 中国实验方剂学杂志. 2022(11): 238-245 .
    8. 段君,许海,沈峰. 传统中医药文化视角下甘草在癌症治疗中的临床应用研究. 深圳中西医结合杂志. 2022(17): 126-128 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (206) PDF downloads (44) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return