KE Qiaomei, ZENG Wei, SHUAI Yutong, et al. Study on Ultrasonic-Assisted Enzymatic Hydrolysis of Distiller’s Grains Cellulose[J]. Science and Technology of Food Industry, 2022, 43(8): 196−203. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070206.
Citation: KE Qiaomei, ZENG Wei, SHUAI Yutong, et al. Study on Ultrasonic-Assisted Enzymatic Hydrolysis of Distiller’s Grains Cellulose[J]. Science and Technology of Food Industry, 2022, 43(8): 196−203. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070206.

Study on Ultrasonic-Assisted Enzymatic Hydrolysis of Distiller’s Grains Cellulose

More Information
  • Received Date: July 18, 2021
  • Available Online: February 16, 2022
  • In order to promote the development and utilization of distiller’s grain resources in China, the present study explored the enzymatic hydrolysis conditions of distiller’s grains cellulose based on ultrasonic pretreatment. Firstly, the effects of ultrasound parameters (time, temperature, power) and enzymatic hydrolysis process parameters (time, pH, temperature, enzyme addition, substrate concentration) on the enzymatic hydrolysis of vinasse cellulose were studied through single-factor experiments. The Plackett-Burman test was carried out to screen out the key factors which affected the enzymatic hydrolysis reaction, and then the Box-Behnken test was used to optimize the enzymatic hydrolysis process. The Plackett-Burman test results showed that the key factors affecting the enzymatic hydrolysis of vinasse cellulose were ultrasound time, enzymatic hydrolysis time, enzymatic hydrolysis pH, and enzyme addition. The Box-Behnken results showed that the optimal enzymolysis process conditions were ultrasonic time 21 min, enzymolysis time 140 min, enzymatic hydrolysis pH5.41, enzyme addition 990 U/g, ultrasonic temperature 60 ℃, ultrasonic power 200 W, enzymolysis temperature 50 ℃, and the concentration of enzymatic hydrolysis substrate 1:20 g/mL. Under these conditions, the cellulose conversion rate of distiller’s grains were 5.62%, which was 35.4% higher than that of the control group. The results showed that ultrasonic pretreatment was an effective way to improve the cellulose conversion rate of distiller’s grains.
  • [1]
    刘志云, 钟晓霞, 姚焰础, 等. 白酒糟生物饲料及其在猪生产上的应用现状[J]. 动物营养学报,2020,32(1):15−20. [LIU Z Y, ZHONG X X, YAO Y C, et al. Biological feed of white distiller’s grains and its application status in swine production[J]. Chinese Journal of Animal Nutrition,2020,32(1):15−20. doi: 10.3969/j.issn.1006-267x.2020.01.003
    [2]
    晓文. 2020年度全国酿酒产业产量数据[J]. 酿酒科技,2021(2):96. [XIAO W. Output data of China alcoholic drinks industry in 2020[J]. Liquor-Making Science & Technology,2021(2):96.
    [3]
    胡志强, 李存福, 张国顺, 等. 白酒酒糟综合利用技术研究进展[J]. 山东化工,2019,48(15):76−78. [HU Z Q, LI C F, ZHANG G S, et al. Research progress of comprehensive utilization technique of distiller’s grains[J]. Shandong Chemical Industry,2019,48(15):76−78. doi: 10.3969/j.issn.1008-021X.2019.15.031
    [4]
    兰小艳, 陈雪玲, 张敬慧, 等. 酒糟中纤维素的降解及再利用研究[J]. 畜牧与饲料科学,2018,39(4):21−22. [LAN X Y, CHEN X L, ZHANG J H, et al. Investigation on degradation and reuse of cellulose in distiller’s grains[J]. Animal Husbandry and Feed Science,2018,39(4):21−22. doi: 10.12160/j.issn.1672-5190.2018.04.006
    [5]
    张伟, 林燕, 刘妍, 等. 利用秸秆制备燃料乙醇的关键技术研究进展[J]. 化工进展,2011,30(11):2417−2423. [ZHANG W, LIN Y, LIU Y, et al. Research progress in the crucial techniques of fuel ethanol production from stalks[J]. Chemical Industry and Engineering Progress,2011,30(11):2417−2423.
    [6]
    WANG W, LIANG T, BAI H Y, et al. All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment[J]. Carbohydrate Polymers,2018,179:297−304. doi: 10.1016/j.carbpol.2017.09.098
    [7]
    赵博, 胡尚连, 龚道勇, 等. 固体酸催化纤维素水解转化葡萄糖的研究进展[J]. 化工进展,2017,36(2):555−567. [ZHAO B, HU S L, GONG D Y, et al. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Chemical Industry and Engineering Progress,2017,36(2):555−567.
    [8]
    马文鹏, 裴芳霞, 任海伟, 等. 双酶复合水解酒糟制备可发酵糖的工艺研究[J]. 酿酒科技,2016,262(4):89−92. [MA W P, PEI F X, REN H W, et al. The preparation of fermentable sugar through the hydrolysis of distillers grains by two enzymes[J]. Liquor-Making Science & Technology,2016,262(4):89−92.
    [9]
    QU W J, MA H L, LIU B, et al. Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment[J]. Ultrasonics Sonochemistry,2013,20(6):1408−1413. doi: 10.1016/j.ultsonch.2013.04.012
    [10]
    PAN A D, ZENG H Y, ALAIN G B F C, et al. Heat-pretreatment and enzymolysis behavior of the lotus seed protein[J]. Food Chemistry,2016,201:230−236. doi: 10.1016/j.foodchem.2016.01.069
    [11]
    DÁVILA I, REMÓN J, GULLÓN P, et al. Production and characterization of lignin and cellulose fractions obtained from pretreated vine shoots by microwave assisted alkali treatment[J]. Bioresource Technology,2019,289:121726. doi: 10.1016/j.biortech.2019.121726
    [12]
    ALVIRA P, NEGRO M J, BALLESTEROS I, et al. Steam explosion for wheat straw pretreatment for sugars production[J]. Bioethanol,2016,2(1):66−75.
    [13]
    任海伟, 徐娜, 李金平, 等. 化学预处理提高酒糟生物质酶解糖化效果[J]. 农业工程学报,2014,30(16):239−246. [REN H W, XU N, LI J P, et al. Chemical pretreatment improving effect of enzymatic saccharification of distillers grains biomass[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(16):239−246. doi: 10.3969/j.issn.1002-6819.2014.16.031
    [14]
    CHEN L, CHEN J S, REN J Y, et al. Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2600−2609. doi: 10.1021/jf103771x
    [15]
    滕超, 查沛娜, 范园园, 等. 超声波在酶解制备技术中的应用进展[J]. 江苏农业科学,2014,42(6):13−16. [TENG C, ZHA P N, FAN Y Y, et al. Progress in application of ultrasonic in enzymatic hydrolysis[J]. Jiangsu Agricultural Sciences,2014,42(6):13−16. doi: 10.3969/j.issn.1002-1302.2014.06.005
    [16]
    ZHANG Q H, BENOIT M, VIGIER K D O, et al. Pretreatment of microcrystalline cellulose by ultrasounds: Effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose[J]. Green Chemistry,2013,15(4):963−969. doi: 10.1039/c3gc36643j
    [17]
    YU J, ZHANG J B, HE J, et al. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull[J]. Bioresource Technology,2009,100(2):903−908. doi: 10.1016/j.biortech.2008.07.025
    [18]
    赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008(8):534−536. [ZHAO K, XU P J, GU G Y. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method[J]. Food Science,2008(8):534−536. doi: 10.3321/j.issn:1002-6630.2008.08.127
    [19]
    YANG B, WILLIES D M, WYMAN C E. Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion[J]. Biotechnology and Bioengineering,2006,94(6):1122−1128. doi: 10.1002/bit.20942
    [20]
    史和娣, 邓明磊. 关于酶促反应的非线性回归模型的探讨[J]. 科学技术创新,2017(29):20−21. [SHI H D, DENG M L. Discussion on nonlinear regression model of enzymatic reaction[J]. Scientific and Technological Innovation,2017(29):20−21. doi: 10.3969/j.issn.1673-1328.2017.29.009
    [21]
    余婷婷, 薛亚军. 纤维素酶水酶法提取茶籽油的条件优化及茶籽油成品分析[J]. 四川理工学院学报(自然科学版),2019,32(5):1−7. [YU T T, XUE Y J. Optimization of conditions for the extraction of tea seed oil using cellulase and analysis of the tea seed oil[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition),2019,32(5):1−7.
    [22]
    田甜, 朱晶晶, 何瑜, 等. 一种新的羟自由基生成方法及其在亚甲基蓝降解中的应用[J]. 湖北大学学报(自然科学版),2014,36(5):447−450. [TIAN T, ZHU J J, HE Y, et al. A new method for hydroxyl radical preparation and its application on the degradation of methylene blue[J]. Journal of Hubei University (Natural Science Edition),2014,36(5):447−450.
    [23]
    李松晔, 刘晓非, 庄旭品, 等. 棉浆粕纤维素的超声波处理[J]. 应用化学,2003(11):1030−1034. [LI S Y, LIU X F, ZHUANG X P, et al. Ultrasonic treatment of cotton pulp cellulose[J]. Chinese Journal of Applied Chemistry,2003(11):1030−1034. doi: 10.3969/j.issn.1000-0518.2003.11.003
    [24]
    高奇瑞, 夏金兰, 单杨, 等. 超声波空化效应对纤维素酶降解秸秆影响的研究[J]. 山东农业大学学报(自然科学版),2014,45(2):237−242. [GAO Q R, XIA J L, SHAN Y, et al. Research on wheat straw degradation by cellulase under the effect of ultrasonic cavitation[J]. Journal of Shandong Agricultural University (Natural Science Edition),2014,45(2):237−242.
    [25]
    WANG D L, YAN L F, MA X B, et al. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems[J]. International Journal of Biological Macromolecules,2018,119:453−461. doi: 10.1016/j.ijbiomac.2018.07.133
    [26]
    黄朝汤. 超声对小麦蛋白水解物美拉德反应进程的影响[J]. 食品研究与开发,2020,41(17):44−47. [HUANG C T. Effect of ultrasound on the Millard reaction process of wheat protein hydrolysates[J]. Food Research and Development,2020,41(17):44−47.
  • Cited by

    Periodical cited type(35)

    1. 李秀清,何江龙,李盼盼,纪宝玉,裴莉昕,陈随清,董诚明. 麦冬不同部位红外光谱分析及成分含量的测定. 饲料工业. 2025(03): 112-117 .
    2. 罗欣,胡杨,倪兴婷,谈小飞,黄涅,赖富丽,李强,杨强. 九蒸九制对九华山多花黄精品质的影响. 中国酿造. 2025(02): 144-149 .
    3. 袁怡菁,王秋红. 黄精化学成分、药理作用研究进展及质量标志物预测分析. 中医药信息. 2024(02): 72-80+86 .
    4. 张倜培,李青,包鸿慧,沈正兴,石娟,唐前勇,程一方,周睿. 干燥方式对绿碎茶多酚提取物体外抗氧化和抗糖尿病及乙酰胆碱酯酶抑制活性的影响. 食品与发酵工业. 2024(04): 77-84 .
    5. 罗亚惠,宿珠琳,马永生,邹建. 超声辅助法提取柚子皮多酚的工艺优化. 现代食品. 2024(01): 51-56 .
    6. 黄素艳,崔柯鑫,周德庆,王珊珊,王明丽,王大军. 植物多酚改善肠道屏障及糖脂代谢的研究进展. 食品研究与开发. 2024(06): 218-224 .
    7. 关洋莹,唐守方,彭雨鑫,李梦媛,刘赢心,蒋璥远,冯淑婷,张新民,武毅. 桦褐孔菌抗糖尿病的研究进展. 长春中医药大学学报. 2024(04): 463-467 .
    8. 王爱灵,张梅,申娜娜,徐梦文,章骏伟,李瑞龙,兰伟. 黑果腺肋花楸果酒生产工艺研究进展. 滁州学院学报. 2024(02): 21-28 .
    9. 符兵,周东来,李庆荣,邢东旭. 桑叶及其活性物质对动物肠道微生物的调控作用研究进展. 中国畜牧兽医. 2024(06): 2460-2470 .
    10. 王菁,乔勇进,柳洪入,王晓,叶章颖,林思敏,王春芳. 超高压在植物活性物质提取中的应用研究进展. 农业工程学报. 2024(18): 272-282 .
    11. 陈睿,李佳轩,王旭,谢双龙,覃继肖,许一清,卢琦,田兴舟. 刺梨籽对肉兔消化代谢、血浆生化指标、屠宰性能及肉品质的影响. 动物营养学报. 2024(10): 6673-6684 .
    12. 郭子斌,魏静,范蓓,王凤忠,蔡如玉,孙晶. 辅助降血糖茄皮含片制备. 热带农业科学. 2024(08): 65-74 .
    13. 薛惠丹,张未希,邓诏隆,董瑞杰,陈瑞飞,安靖. 徐香猕猴桃果皮多酚提取工艺的优化及其单体抗氧化活性研究. 陕西科技大学学报. 2024(06): 31-39 .
    14. 那治国,余爽,贺书珍,初众. 低GI杂粮可可冲调粉辅助降血糖作用. 食品工业科技. 2023(01): 28-37 . 本站查看
    15. 陈燕萌,魏金兰,陈凤,黄宇扬,李珊珊,郭松. 假蒟叶多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 76-84 .
    16. 邱建强,黄文,王玉玺,彭凯. 单宁对动物肠道微生物调控的研究进展. 动物营养学报. 2023(02): 772-781 .
    17. 陈晓晨,杜希萍,周莉鹃,伍菱,李志朋,杨远帆. 坛紫菜多酚工艺优化及降血糖和抗氧化活性研究. 食品与机械. 2023(02): 140-146 .
    18. 周爽,黄莉,王彦美,张韩杰,赵莉,贺子阳,孙素洁. 植物多酚的生物利用度及其降血糖活性研究进展. 食品研究与开发. 2023(06): 211-217 .
    19. 沈晓静,袁文娟,邵俊文,文午,赵品材,洪金琪,顾春燕,姜薇薇. 云南小粒咖啡生豆的抗氧化及α-淀粉酶抑制活性研究. 中国食品添加剂. 2023(05): 96-102 .
    20. 师英春,廖森泰,杨琼,邹宇晓,李倩. 植物多酚和多糖经肠道微生态途径互作调节糖脂代谢的研究进展. 食品安全质量检测学报. 2023(08): 109-118 .
    21. 杨淑珺,胡睿智,贺建华,伍树松. 植物多酚对脂肪酸代谢的调控作用及潜在机制. 中国畜牧杂志. 2023(07): 14-20 .
    22. 史凡,杨红. 纳米结构脂质载体制备及在功能食品中的应用研究进展. 食品工业科技. 2023(15): 1-6 . 本站查看
    23. 陈鑫,王晨,王黎明,赵抒娜,赵芸,刘孟涛,孟庆佳. L-阿拉伯糖复配糖对小鼠血糖的影响. 食品工业科技. 2023(17): 392-398 . 本站查看
    24. 李琳琳,王乐,尹卫,代爽,刘晓军,梁健,王煜伟. 紫皮大蒜多酚分离纯化及体外降血糖活性研究. 中国调味品. 2023(09): 18-23 .
    25. 王露,黄立新,刘磊. 食源性多酚对α-淀粉酶作用大米淀粉活性的影响. 中国粮油学报. 2023(08): 131-137 .
    26. 唐双庆,陈禅友,王亚珍,王红波. 食用豆类资源中酚类化合物研究进展. 中国调味品. 2023(12): 200-205+212 .
    27. 徐小云,伍舒华,赖敏成,廖延智,吴文,欧纯宜. 高效液相色谱测定龙眼核中多酚含量方法优化. 广州化工. 2023(22): 61-64 .
    28. 彭言劼,魏雪莲,周勇,胡强,胡霞,宋春草. 不同果袋对红富士葡萄果实品质的影响. 中国南方果树. 2022(02): 134-138 .
    29. 陈旭,徐楚炎,范露,石玉. 山楂叶多酚提取工艺及其降糖降脂应用研究. 饲料研究. 2022(05): 78-83 .
    30. 滕欢欢,王仁中,吴德玲,金传山,柳春风,唐旭,黄圣卓,许凤清. 多花黄精炮制前后不同极性部位抗氧化与降血糖活性研究. 食品与发酵工业. 2022(08): 70-75 .
    31. 吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
    32. 胡德胜,李健,张岩,钟丹苗,方雪飞,廖营忠,苏干光. 林下栽培的大球盖菇多酚提取工艺条件优化. 中国食用菌. 2022(08): 65-70 .
    33. 张杰,党斌,杨希娟. 植物多酚的生理活性、抑菌机理及其在食品保鲜中的应用研究进展. 食品工业科技. 2022(24): 460-468 . 本站查看
    34. 马雪,赵丹,张瑞,琚艳君,赵多勇. 多酚类化合物检测分析方法研究进展. 食品安全质量检测学报. 2021(11): 4575-4582 .
    35. 高若容,王钿烈,黄雪松. 固相萃取-高效液相色谱法同时测定蒜皮中六种酚类物质. 食品与发酵工业. 2021(22): 266-272 .

    Other cited types(23)

Catalog

    Article Metrics

    Article views (233) PDF downloads (22) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return