REN Xin, PENG Fei, CHEN Linan, et al. Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace[J]. Science and Technology of Food Industry, 2022, 43(7): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070192.
Citation: REN Xin, PENG Fei, CHEN Linan, et al. Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace[J]. Science and Technology of Food Industry, 2022, 43(7): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070192.

Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace

More Information
  • Received Date: July 18, 2021
  • Available Online: February 11, 2022
  • In order to improve the comprehensive utilization value of Anli resources, the extraction technology of soluble dietary fiber from Anli pomace was studied with a by-product of food processing in this work. On the basis of single factor test, response surface methodology was used to optimize the microwave-assisted composite enzymatic extraction process of soluble dietary fiber from Anli fruit pomace (ALDF). The structure of the prepared dietary fiber was characterized by scanning electron microscopy (SEM), fourier transform infrared (FT-IR) and high performance liquid chromatography (HPLC). The optimization results showed that when the microwave power was 370 W, the liquid-to-material ratio was 14.4:1 mL/g, the added amount of enzyme was 1.6%, and the pH was 7.0, the yield of ALDF was the highest level of 8.07%. The SEM showed that the ALDF had a spindle shape of about 5 μm in length, FT-IR showed that it had the characteristic peak of polysaccharide, and the molecular weight ranged from 5 to 2.076×104 kDa. The results showed that the microwave-assisted enzymatic method had a good extraction effect on the ALDF with a certain industrial application prospect. Therefore, this method could provide a theoretical basis for the high-value development and utilization of Anli fruit pomace.
  • [1]
    THEUWISSEN E, MENSINK R P. Water-soluble dietary fibers and cardiovascular disease[J]. Physiology & Behavior,2008,94(2):285−292.
    [2]
    李娜. 番茄皮可溶性膳食纤维的改性与表征[D]. 上海: 上海交通大学, 2018.

    LI N. The modification and characterization of soluble dietary fiber from tomato peels[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [3]
    廖樟华. 青稞嫩叶可溶性膳食纤维制备及生物活性研究[D]. 上海: 上海交通大学, 2019

    LIAO Z H. Preparation and bioactivities of soluble dietary fiber from young huskless barley leaves[D]. Shanghai: Shanghai Jiao Tong University, 2019.
    [4]
    GAO H, SONG R, LI Y, et al. Effects of oat fiber intervention on cognitive behavior in ldlr/mice modeling atherosclerosis by targeting the microbiome-gut-brain axis[J]. Journal of Agricultural and Food Chemistry,2020,68(49):14480−14491. doi: 10.1021/acs.jafc.0c05677
    [5]
    RAZA G S, MAUKONEN J, MAKINEN M, et al. Hypocholesterolemic effect of the lignin-rich insoluble pomace of brewer’s spent grain in mice fed a high-fat diet[J]. Journal of Agricultural and Food Chemistry,2018,67(4):1104−1114.
    [6]
    YANG L, LIN Q, HAN L, et al. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway[J]. Food & Function,2020,11(7):5965−5975.
    [7]
    REYNOLDS A, MANN J, CUMMINGS J, et al. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses[J]. The Lancet,2019,393(10170):434−445. doi: 10.1016/S0140-6736(18)31809-9
    [8]
    ZHAO L, ZHANG F, DING X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774
    [9]
    LI Q, FANG X, CHEN H, et al. Retarding effect of dietary fibers from bamboo shoot (Phyllostachys edulis) in hyperlipidemic rats induced by a high-fat diet[J]. Food & Function,2021,12(10):4696−4706.
    [10]
    BENITEZ V, REBOLLO-HERNANZ M, HERNANZ S, et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization[J]. Food Research International,2019,122:105−113. doi: 10.1016/j.foodres.2019.04.002
    [11]
    MUÑOZ-CABREJAS A, LACLAUSTRA M, GUALLAR-CASTILLÓN P, et al. High-quality intake of carbohydrates is associated with lower prevalence of subclinical atherosclerosis in femoral arteries: The awhs study[J]. Clinical Nutrition,2021,40(6):3883−3889. doi: 10.1016/j.clnu.2021.04.049
    [12]
    LEÓN-GONZÁLEZ A J, JARA-PALACIOS M J, ABBAS M, et al. Role of epigenetic regulation on the induction of apoptosis in Jurkat leukemia cells by white grape pomace rich in phenolic compounds[J]. Food & Function,2017,8(11):4062−4069.
    [13]
    MACAGNA1N F T, DA SILVA L P, HECKTHEUER L H. Dietary fiber: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds[J]. Food Research International,2016,85:144−154. doi: 10.1016/j.foodres.2016.04.032
    [14]
    SLAVIN J L. Position of the American dietetic association: Health implications of dietary fiber[J]. Journal of the American Dietetic Association,2008,108(10):1716−1731. doi: 10.1016/j.jada.2008.08.007
    [15]
    SOLIMAN G A. Dietary fiber, atherosclerosis, and cardiovascular disease[J]. Nutrients,2019,11(5):1155. doi: 10.3390/nu11051155
    [16]
    BRAHEM M, BORNARD I, RENARD C M G C, et al. Multiscale localization of procyanidins in ripe and overripe perry pears by light and transmission electron microscopy[J]. Journal of Agricultural and Food Chemistry,2020,68(33):8900−8906. doi: 10.1021/acs.jafc.0c02036
    [17]
    CHO J Y, KIM C M, LEE H J, et al. Caffeoyl triterpenes from pear (Pyrus pyrifolia Nakai) fruit peels and their antioxidative activities against oxidation of rat blood plasma[J]. Journal of Agricultural and Food Chemistry,2013,61(19):4563−4569. doi: 10.1021/jf400524b
    [18]
    孔明明. 安梨果酒的制备工艺优化[D]. 天津: 天津中医药大学, 2020

    KONG M M. Optimization of preparation rechnology of Anli (Pyrus ussuriensis Maxim. ) liquo[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020.
    [19]
    国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018

    National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2018.
    [20]
    赵纪伟. 不同安梨株系果实贮藏过程中品质变化研究[D]. 保定: 河北农业大学, 2011

    ZHAO J W. Studies on the change of fruit quality during storage in different lines of Pyrus ussuriensis ‘Anli’[D]. Baoding: Hebei Agricultural University, 2011.
    [21]
    MENG S, WANG W H, CAO L K. Soluble dietary fibers from black soybean hulls: Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity[J]. Journal of Food Science,2020,85:1668−1674. doi: 10.1111/1750-3841.15133
    [22]
    LIU Y L, ZHANG H B, YI C P, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021,342:128352. doi: 10.1016/j.foodchem.2020.128352
    [23]
    BAI Y, ZHAO J B, TAO S Y, et al. Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro [J]. Journal of the Science of Food and Agriculture 2020, 100: 4282−4291.
    [24]
    李艳. 不同酶法改性的马铃薯渣膳食纤维工艺条件及性能研究[D]. 呼和浩特: 内蒙古农业大学, 2019

    LI Y. Study on process conditions and properties of dietary fibers from potato pomace modified by different enzymatic method[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [25]
    LE B, PHAM T N A, YANG S H. Prebiotic potential and anti-inflammatory activity of soluble polysaccharides obtained from soybean pomace[J]. Foods,2020,9:12.
    [26]
    林于洋. 酶-微波辅助协同提取心里美萝卜中有效成分研究[D]. 广州: 广东药科大学, 2020

    LIN Y Y. Study on synergistic extraction of multiple effective constituents from purple-heart radish by enzyme and microwave co-assisted extraction[D]. Guangzhou: Guangdong Pharmaceutical University, 2020.
    [27]
    巫永华, 刘梦虎, 孙悦, 等. 超声微波辅助酶法提取黑豆皮水溶性膳食纤维及理化特性分析[J]. 食品工业科技,2020,41(6):8−14. [WU Y H, LIU M H, SUN Y, et al. Ultrasonic-microwave assisted enzymatic extraction of water-soluble dietary fiber from black soybean hull and its physicochemical properties[J]. Science and Technology of Food Industry,2020,41(6):8−14.
    [28]
    申红林, 王凤玲. 灰树花多糖复合酶协同微波辅助提取工艺及抗氧化性研究[J]. 食品研究与开发,2020,41(22):124−131. [SHEN H L, WANG F L. Studies on compound enzymes synergistic microwave-assisted extraction process and antioxidant activity of Grifola frondose polysaccharide[J]. Food Research and Development,2020,41(22):124−131.
    [29]
    胡福田, 周红军, 徐华, 等. 微波预处理复合酶法浸提茶皂素工艺条件研究[J]. 广州化学,2018,43(5):18−23. [HU F T, ZHOU H J, XU H, et al. Study on extraction technology of tea saponin from microwave pretreatment camellia oleifera powder by complex enzyme[J]. Guangzhou Chemistry,2018,43(5):18−23.
    [30]
    李晓颍, 张文静, 刘宝丽, 等. 顶空固相微萃取-气相色谱-质谱联用法优化与‘安梨’花序挥发性成分分析[J]. 中国果树,2020(2):16−22. [LI X Y, ZHANG W J, LIU B L, et al. Optimization and analysis of aroma components in ‘Anli’ pear flower by headspace solid phase micro-extraction-gas chromatography-mass spectrometry[J]. China Fruits,2020(2):16−22.
    [31]
    梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技,2020,41(17):199−205,218. [LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry,2020,41(17):199−205,218.
    [32]
    李施瑶, 代玲敏, 范宜杰, 等. 化学法提取红树莓果渣可溶性膳食纤维的工艺优化[J]. 食品工业科技,2019,40(19):180−186,193. [LI S Y, DAI L M, FAN Y J, et al. Optimization of extraction process of soluble dietary fiber from raspberry pomaces by chemical method[J]. Science and Technology of Food Industry,2019,40(19):180−186,193.
    [33]
    蒋纬, 王嘉莹, 何鸿. 不同提取方法对野木瓜膳食纤维提取及其抗氧化特性的影响研究[J]. 农产品加工,2019(24):28−31. [JIANG W, WANG J Y, HE H. Effects of different extraction methods on dietary fiber extraction and antioxidant properties of wild papaya[J]. Farm Products Processing,2019(24):28−31.
    [34]
    丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021,42(20):157−163. [DING Z Y, ZHANG S K, HE Z Y, et al. Optimization of enzymatic extraction process of insoluble dietary fiber from Polygonatum sibiricum residue by response surface methodology and its characterization[J]. Science and Technology of Food Industry,2021,42(20):157−163.
    [35]
    王凌翌, 周利琴, 刘志国, 等. 联合酶法提取豆渣蛋白肽和可溶性膳食纤维[J]. 中国油脂,2021,46(6):114−118. [WANG L Y, ZHOU L Q, LIU Z G, et al. Extraction of protein peptides and soluble dietary fiber from soybean dregs by combined enzymatic method[J]. China Oils and Fats,2021,46(6):114−118.
    [36]
    陈法志, 翟敬华, 刘克华, 等. 响应面法优化微波提取牡丹果壳水溶性膳食纤维工艺[J]. 江汉大学学报(自然科学版),2020,48(6):48−55. [CHEN F Z, ZHAI J H, LIU K H, et al. Optimization of microwave-assisted extraction of water-soluble dietary fiber from peony husk by response surface methodology[J]. Journal of Jianghan University ( Nat. Sci. Ed. ),2020,48(6):48−55.
    [37]
    王娟, 康子悦, 肖金玲, 等. 超声-微波辅助酶法对小米SDF提取和物理性质的影响[J]. 包装工程,2020,41(7):25−32. [WANG J, KANG Z Y, XIAO J L, et al. Influence of ultrasonic-microwave assisted enzymatic method on extraction and physical properties of water-soluble dietary fiber from millet[J]. Packaging Engineering,2020,41(7):25−32.
    [38]
    GAN J P, PENG G Y, LIU S, et al. Comparison of structural, functional and in vitro digestion properties of bread incorporated with grapefruit peel soluble dietary fibers prepared by three microwave-assisted modifications[J]. Food Function,2020,11:6458−6466. doi: 10.1039/D0FO00760A
    [39]
    QU J L, HUANG P, ZHANG L, et al. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship[J]. Int J Biol Macromol,2020,161:24−34. doi: 10.1016/j.ijbiomac.2020.05.196
    [40]
    HASHEMIFESHARAKI R, XANTHAKIS E, ALTINTAS Z, et al. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity[J]. Carbohydrate Polymers,2020,240:116301. doi: 10.1016/j.carbpol.2020.116301
    [41]
    ZENG A Q, YANGR J, YU S H, et al. Porphyra A novel hypoglycemic agent: Polysaccharides from laver (spp.)[J]. Food Function,2020,11:9048−9056. doi: 10.1039/D0FO01195A
    [42]
    李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技,2021,46(4):194−201. [LI H, FAN F Y, QI J H, et al. Ultrasonic assisted enzymatic extraction of dietary fiber from rosa sterilis pomace and its physicochemical properties[J]. Food Science and Technology,2021,46(4):194−201.
    [43]
    徐新乐, 刘婷婷, 张闪闪, 等. 猴头菇高品质膳食纤维的制备及理化性质分析[J/OL]. 食品工业科技: 1−12[2021-09-11]

    XU X L, LIU T T, ZHANG S S, et al. Preparation, physicochemical properties of high-quality dietary fiber from Hericium erinaceus[J/OL]. Science and Technology of Food Industry: 1−12[2021-09-11].
    [44]
    郑璞帆, 张梅, 庞志豪, 等. 京津冀地区主栽梨品种果实外观特征、营养特性及香气物质分析[J]. 南开大学学报(自然科学版),2020,53(6):35−42. [ZHENG P F, ZHANG M, PANG Z H, et al. Analysis of fruit appearance, nutritional characteristics and aroma compounds of the main cultivars of pear (Pyrus L.) in Beijing-Tianjin-Hebei region[J]. Acta Scientiarum Naiuralium Unirversitatis Nankaiensis,2020,53(6):35−42.
    [45]
    孔明明. 安梨果酒的制备工艺优化[D]. 天津: 天津中医药大学, 2020

    KONG M M. Optimization of preparation technology of anli (Pyrus ussuriensis Maxim.) liquor[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020.
  • Related Articles

    [1]CHEN Linhong, FU Manqin, LU Shengyong, LI Lu, ZHONG Yujuan, LI Junxing, XIAO Gengsheng. Analysis of Quality and Volatile Components in Different Varieties of Pumpkin[J]. Science and Technology of Food Industry, 2024, 45(5): 223-233. DOI: 10.13386/j.issn1002-0306.2023040110
    [2]ZHOU Jia, SU Dan, WANG Zhixia, REN Hongtao, HUANG Yuan, YU Juan, LI Yali, ZHOU Hongjie. Analysis of Characteristic Volatile Components of Three Kinds of Black Tea Based on HS-SPME-GC-MS and Multivariate Statistics[J]. Science and Technology of Food Industry, 2023, 44(17): 342-350. DOI: 10.13386/j.issn1002-0306.2022110267
    [3]XU Qiang, JIANG Xiao, TAN Xili, YUAN Tianmeng, BIAN Minghong, ZENG Hong. Development of Apple Lycium barbarum Wine and Analysis of Volatile Components[J]. Science and Technology of Food Industry, 2023, 44(10): 151-159. DOI: 10.13386/j.issn1002-0306.2022070048
    [4]LIANG Shuilian, LV Daizhu, MA Chen, XIANG Tantan, ZHOU Jia, WANG Mingyue. Analysis of Volatile Components and Aroma Features of Banana ‘Guijiao No.1’ Fruit at Different Ripening Stages[J]. Science and Technology of Food Industry, 2021, 42(14): 99-106. DOI: 10.13386/j.issn1002-0306.2020120095
    [5]GAO Man-man, ZHANG Xu-pu, BAI Jun-yan, WU Rong-rong, CHENG Shu-mei. Component Analysis of Free Amino Acids,GABA and Volatile Aroma in Brown Rice Enzymes with Different Fermentation Processes[J]. Science and Technology of Food Industry, 2019, 40(23): 36-41. DOI: 10.13386/j.issn1002-0306.2019.23.006
    [6]WANG Hai-li, YANG Xiu-fang, KONG Jun-hao, CHENG Yu-liang, XIE Yun-fei, YAO Wei-rong, GUO Ya-hui, QIAN He. Analysis of Physical and Chemical Indicators and Aroma Components of Different Green Tea[J]. Science and Technology of Food Industry, 2019, 40(18): 217-223. DOI: 10.13386/j.issn1002-0306.2019.18.035
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]MENG Yi, ZHANG Yu-hua, JIANG Pei-hong, CHEN Dong-jie, ZHANG Ying-long, ZHANG Yong-mei. Analysis of volatile components of beef during storage[J]. Science and Technology of Food Industry, 2016, (16): 61-66. DOI: 10.13386/j.issn1002-0306.2016.16.003
    [9]LU Yan, DU Li-ping, XIAO Dong-guang. Analysis of volatile components of Lapsang Souchong black tea[J]. Science and Technology of Food Industry, 2015, (02): 57-60. DOI: 10.13386/j.issn1002-0306.2015.02.003
    [10]XU Yong-xia, JIANG Cheng-cheng, ZHANG Chao-min, LV Yan-fang, ZHU Dan-shi, LI Jian-rong. Analysis of volatile components in Hairtail by SPME-GC-MS[J]. Science and Technology of Food Industry, 2014, (19): 308-311. DOI: 10.13386/j.issn1002-0306.2014.19.058
  • Cited by

    Periodical cited type(5)

    1. 董洪宇,赵程澄,任战军,谢辉,王淑辉. 基于电子鼻和GC-MS技术探究不同林麝饲料的风味特征. 中国饲料. 2025(01): 117-125 .
    2. 屠大伟,陈小鸿,黄永强,胡霞,王烁超,刘文俊. 基于电子鼻、GC-MS结合感官评价分析丰都麻辣鸡调料风味特征. 食品与发酵工业. 2024(01): 293-301 .
    3. 付劭杰,毕金峰,曹风,刘梦,姜溪雨,陈宇航,陈文艺,刘璇. 非浓缩还原苹果汁贮藏期颗粒稳定性与果胶结构相关性研究. 核农学报. 2024(10): 1941-1950 .
    4. 屠大伟,翁盈秋,李青青,冯露萍,刘文俊. 火锅常用干辣椒品质及挥发性成分研究. 食品工业科技. 2023(16): 358-366 . 本站查看
    5. 张帅,吴水金,林宝妹,李海明,吴妙鸿,戴艺民. 福建6个香牙蕉品种(品系)后熟过程中挥发性风味成分的变化. 中国果树. 2023(11): 61-69+80 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (181) PDF downloads (17) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return