REN Xin, PENG Fei, CHEN Linan, et al. Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace[J]. Science and Technology of Food Industry, 2022, 43(7): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070192.
Citation: REN Xin, PENG Fei, CHEN Linan, et al. Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace[J]. Science and Technology of Food Industry, 2022, 43(7): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070192.

Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace

More Information
  • Received Date: July 18, 2021
  • Available Online: February 11, 2022
  • In order to improve the comprehensive utilization value of Anli resources, the extraction technology of soluble dietary fiber from Anli pomace was studied with a by-product of food processing in this work. On the basis of single factor test, response surface methodology was used to optimize the microwave-assisted composite enzymatic extraction process of soluble dietary fiber from Anli fruit pomace (ALDF). The structure of the prepared dietary fiber was characterized by scanning electron microscopy (SEM), fourier transform infrared (FT-IR) and high performance liquid chromatography (HPLC). The optimization results showed that when the microwave power was 370 W, the liquid-to-material ratio was 14.4:1 mL/g, the added amount of enzyme was 1.6%, and the pH was 7.0, the yield of ALDF was the highest level of 8.07%. The SEM showed that the ALDF had a spindle shape of about 5 μm in length, FT-IR showed that it had the characteristic peak of polysaccharide, and the molecular weight ranged from 5 to 2.076×104 kDa. The results showed that the microwave-assisted enzymatic method had a good extraction effect on the ALDF with a certain industrial application prospect. Therefore, this method could provide a theoretical basis for the high-value development and utilization of Anli fruit pomace.
  • [1]
    THEUWISSEN E, MENSINK R P. Water-soluble dietary fibers and cardiovascular disease[J]. Physiology & Behavior,2008,94(2):285−292.
    [2]
    李娜. 番茄皮可溶性膳食纤维的改性与表征[D]. 上海: 上海交通大学, 2018.

    LI N. The modification and characterization of soluble dietary fiber from tomato peels[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [3]
    廖樟华. 青稞嫩叶可溶性膳食纤维制备及生物活性研究[D]. 上海: 上海交通大学, 2019

    LIAO Z H. Preparation and bioactivities of soluble dietary fiber from young huskless barley leaves[D]. Shanghai: Shanghai Jiao Tong University, 2019.
    [4]
    GAO H, SONG R, LI Y, et al. Effects of oat fiber intervention on cognitive behavior in ldlr/mice modeling atherosclerosis by targeting the microbiome-gut-brain axis[J]. Journal of Agricultural and Food Chemistry,2020,68(49):14480−14491. doi: 10.1021/acs.jafc.0c05677
    [5]
    RAZA G S, MAUKONEN J, MAKINEN M, et al. Hypocholesterolemic effect of the lignin-rich insoluble pomace of brewer’s spent grain in mice fed a high-fat diet[J]. Journal of Agricultural and Food Chemistry,2018,67(4):1104−1114.
    [6]
    YANG L, LIN Q, HAN L, et al. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway[J]. Food & Function,2020,11(7):5965−5975.
    [7]
    REYNOLDS A, MANN J, CUMMINGS J, et al. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses[J]. The Lancet,2019,393(10170):434−445. doi: 10.1016/S0140-6736(18)31809-9
    [8]
    ZHAO L, ZHANG F, DING X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774
    [9]
    LI Q, FANG X, CHEN H, et al. Retarding effect of dietary fibers from bamboo shoot (Phyllostachys edulis) in hyperlipidemic rats induced by a high-fat diet[J]. Food & Function,2021,12(10):4696−4706.
    [10]
    BENITEZ V, REBOLLO-HERNANZ M, HERNANZ S, et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization[J]. Food Research International,2019,122:105−113. doi: 10.1016/j.foodres.2019.04.002
    [11]
    MUÑOZ-CABREJAS A, LACLAUSTRA M, GUALLAR-CASTILLÓN P, et al. High-quality intake of carbohydrates is associated with lower prevalence of subclinical atherosclerosis in femoral arteries: The awhs study[J]. Clinical Nutrition,2021,40(6):3883−3889. doi: 10.1016/j.clnu.2021.04.049
    [12]
    LEÓN-GONZÁLEZ A J, JARA-PALACIOS M J, ABBAS M, et al. Role of epigenetic regulation on the induction of apoptosis in Jurkat leukemia cells by white grape pomace rich in phenolic compounds[J]. Food & Function,2017,8(11):4062−4069.
    [13]
    MACAGNA1N F T, DA SILVA L P, HECKTHEUER L H. Dietary fiber: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds[J]. Food Research International,2016,85:144−154. doi: 10.1016/j.foodres.2016.04.032
    [14]
    SLAVIN J L. Position of the American dietetic association: Health implications of dietary fiber[J]. Journal of the American Dietetic Association,2008,108(10):1716−1731. doi: 10.1016/j.jada.2008.08.007
    [15]
    SOLIMAN G A. Dietary fiber, atherosclerosis, and cardiovascular disease[J]. Nutrients,2019,11(5):1155. doi: 10.3390/nu11051155
    [16]
    BRAHEM M, BORNARD I, RENARD C M G C, et al. Multiscale localization of procyanidins in ripe and overripe perry pears by light and transmission electron microscopy[J]. Journal of Agricultural and Food Chemistry,2020,68(33):8900−8906. doi: 10.1021/acs.jafc.0c02036
    [17]
    CHO J Y, KIM C M, LEE H J, et al. Caffeoyl triterpenes from pear (Pyrus pyrifolia Nakai) fruit peels and their antioxidative activities against oxidation of rat blood plasma[J]. Journal of Agricultural and Food Chemistry,2013,61(19):4563−4569. doi: 10.1021/jf400524b
    [18]
    孔明明. 安梨果酒的制备工艺优化[D]. 天津: 天津中医药大学, 2020

    KONG M M. Optimization of preparation rechnology of Anli (Pyrus ussuriensis Maxim. ) liquo[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020.
    [19]
    国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018

    National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2018.
    [20]
    赵纪伟. 不同安梨株系果实贮藏过程中品质变化研究[D]. 保定: 河北农业大学, 2011

    ZHAO J W. Studies on the change of fruit quality during storage in different lines of Pyrus ussuriensis ‘Anli’[D]. Baoding: Hebei Agricultural University, 2011.
    [21]
    MENG S, WANG W H, CAO L K. Soluble dietary fibers from black soybean hulls: Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity[J]. Journal of Food Science,2020,85:1668−1674. doi: 10.1111/1750-3841.15133
    [22]
    LIU Y L, ZHANG H B, YI C P, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021,342:128352. doi: 10.1016/j.foodchem.2020.128352
    [23]
    BAI Y, ZHAO J B, TAO S Y, et al. Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro [J]. Journal of the Science of Food and Agriculture 2020, 100: 4282−4291.
    [24]
    李艳. 不同酶法改性的马铃薯渣膳食纤维工艺条件及性能研究[D]. 呼和浩特: 内蒙古农业大学, 2019

    LI Y. Study on process conditions and properties of dietary fibers from potato pomace modified by different enzymatic method[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [25]
    LE B, PHAM T N A, YANG S H. Prebiotic potential and anti-inflammatory activity of soluble polysaccharides obtained from soybean pomace[J]. Foods,2020,9:12.
    [26]
    林于洋. 酶-微波辅助协同提取心里美萝卜中有效成分研究[D]. 广州: 广东药科大学, 2020

    LIN Y Y. Study on synergistic extraction of multiple effective constituents from purple-heart radish by enzyme and microwave co-assisted extraction[D]. Guangzhou: Guangdong Pharmaceutical University, 2020.
    [27]
    巫永华, 刘梦虎, 孙悦, 等. 超声微波辅助酶法提取黑豆皮水溶性膳食纤维及理化特性分析[J]. 食品工业科技,2020,41(6):8−14. [WU Y H, LIU M H, SUN Y, et al. Ultrasonic-microwave assisted enzymatic extraction of water-soluble dietary fiber from black soybean hull and its physicochemical properties[J]. Science and Technology of Food Industry,2020,41(6):8−14.
    [28]
    申红林, 王凤玲. 灰树花多糖复合酶协同微波辅助提取工艺及抗氧化性研究[J]. 食品研究与开发,2020,41(22):124−131. [SHEN H L, WANG F L. Studies on compound enzymes synergistic microwave-assisted extraction process and antioxidant activity of Grifola frondose polysaccharide[J]. Food Research and Development,2020,41(22):124−131.
    [29]
    胡福田, 周红军, 徐华, 等. 微波预处理复合酶法浸提茶皂素工艺条件研究[J]. 广州化学,2018,43(5):18−23. [HU F T, ZHOU H J, XU H, et al. Study on extraction technology of tea saponin from microwave pretreatment camellia oleifera powder by complex enzyme[J]. Guangzhou Chemistry,2018,43(5):18−23.
    [30]
    李晓颍, 张文静, 刘宝丽, 等. 顶空固相微萃取-气相色谱-质谱联用法优化与‘安梨’花序挥发性成分分析[J]. 中国果树,2020(2):16−22. [LI X Y, ZHANG W J, LIU B L, et al. Optimization and analysis of aroma components in ‘Anli’ pear flower by headspace solid phase micro-extraction-gas chromatography-mass spectrometry[J]. China Fruits,2020(2):16−22.
    [31]
    梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技,2020,41(17):199−205,218. [LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry,2020,41(17):199−205,218.
    [32]
    李施瑶, 代玲敏, 范宜杰, 等. 化学法提取红树莓果渣可溶性膳食纤维的工艺优化[J]. 食品工业科技,2019,40(19):180−186,193. [LI S Y, DAI L M, FAN Y J, et al. Optimization of extraction process of soluble dietary fiber from raspberry pomaces by chemical method[J]. Science and Technology of Food Industry,2019,40(19):180−186,193.
    [33]
    蒋纬, 王嘉莹, 何鸿. 不同提取方法对野木瓜膳食纤维提取及其抗氧化特性的影响研究[J]. 农产品加工,2019(24):28−31. [JIANG W, WANG J Y, HE H. Effects of different extraction methods on dietary fiber extraction and antioxidant properties of wild papaya[J]. Farm Products Processing,2019(24):28−31.
    [34]
    丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021,42(20):157−163. [DING Z Y, ZHANG S K, HE Z Y, et al. Optimization of enzymatic extraction process of insoluble dietary fiber from Polygonatum sibiricum residue by response surface methodology and its characterization[J]. Science and Technology of Food Industry,2021,42(20):157−163.
    [35]
    王凌翌, 周利琴, 刘志国, 等. 联合酶法提取豆渣蛋白肽和可溶性膳食纤维[J]. 中国油脂,2021,46(6):114−118. [WANG L Y, ZHOU L Q, LIU Z G, et al. Extraction of protein peptides and soluble dietary fiber from soybean dregs by combined enzymatic method[J]. China Oils and Fats,2021,46(6):114−118.
    [36]
    陈法志, 翟敬华, 刘克华, 等. 响应面法优化微波提取牡丹果壳水溶性膳食纤维工艺[J]. 江汉大学学报(自然科学版),2020,48(6):48−55. [CHEN F Z, ZHAI J H, LIU K H, et al. Optimization of microwave-assisted extraction of water-soluble dietary fiber from peony husk by response surface methodology[J]. Journal of Jianghan University ( Nat. Sci. Ed. ),2020,48(6):48−55.
    [37]
    王娟, 康子悦, 肖金玲, 等. 超声-微波辅助酶法对小米SDF提取和物理性质的影响[J]. 包装工程,2020,41(7):25−32. [WANG J, KANG Z Y, XIAO J L, et al. Influence of ultrasonic-microwave assisted enzymatic method on extraction and physical properties of water-soluble dietary fiber from millet[J]. Packaging Engineering,2020,41(7):25−32.
    [38]
    GAN J P, PENG G Y, LIU S, et al. Comparison of structural, functional and in vitro digestion properties of bread incorporated with grapefruit peel soluble dietary fibers prepared by three microwave-assisted modifications[J]. Food Function,2020,11:6458−6466. doi: 10.1039/D0FO00760A
    [39]
    QU J L, HUANG P, ZHANG L, et al. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship[J]. Int J Biol Macromol,2020,161:24−34. doi: 10.1016/j.ijbiomac.2020.05.196
    [40]
    HASHEMIFESHARAKI R, XANTHAKIS E, ALTINTAS Z, et al. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity[J]. Carbohydrate Polymers,2020,240:116301. doi: 10.1016/j.carbpol.2020.116301
    [41]
    ZENG A Q, YANGR J, YU S H, et al. Porphyra A novel hypoglycemic agent: Polysaccharides from laver (spp.)[J]. Food Function,2020,11:9048−9056. doi: 10.1039/D0FO01195A
    [42]
    李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技,2021,46(4):194−201. [LI H, FAN F Y, QI J H, et al. Ultrasonic assisted enzymatic extraction of dietary fiber from rosa sterilis pomace and its physicochemical properties[J]. Food Science and Technology,2021,46(4):194−201.
    [43]
    徐新乐, 刘婷婷, 张闪闪, 等. 猴头菇高品质膳食纤维的制备及理化性质分析[J/OL]. 食品工业科技: 1−12[2021-09-11]

    XU X L, LIU T T, ZHANG S S, et al. Preparation, physicochemical properties of high-quality dietary fiber from Hericium erinaceus[J/OL]. Science and Technology of Food Industry: 1−12[2021-09-11].
    [44]
    郑璞帆, 张梅, 庞志豪, 等. 京津冀地区主栽梨品种果实外观特征、营养特性及香气物质分析[J]. 南开大学学报(自然科学版),2020,53(6):35−42. [ZHENG P F, ZHANG M, PANG Z H, et al. Analysis of fruit appearance, nutritional characteristics and aroma compounds of the main cultivars of pear (Pyrus L.) in Beijing-Tianjin-Hebei region[J]. Acta Scientiarum Naiuralium Unirversitatis Nankaiensis,2020,53(6):35−42.
    [45]
    孔明明. 安梨果酒的制备工艺优化[D]. 天津: 天津中医药大学, 2020

    KONG M M. Optimization of preparation technology of anli (Pyrus ussuriensis Maxim.) liquor[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020.
  • Related Articles

    [1]BAI Xixi, HAN Chenggang, XU Ying, HAN Jingsong, CAO Chongjiang, CHENG Shujie. Research Progress of Dietary Intervention Strategies for Irritable Bowel Syndrome[J]. Science and Technology of Food Industry, 2022, 43(16): 421-431. DOI: 10.13386/j.issn1002-0306.2021080007
    [2]ZHAO Tong, WANG Xuan, WU Liming, YAN Sha, LU Huanxian, ZHAO Hongmu, XUE Xiaofeng. Research Progress of Fermented Bee-products[J]. Science and Technology of Food Industry, 2022, 43(14): 461-466. DOI: 10.13386/j.issn1002-0306.2021070251
    [3]WU Hong-yan, PENG Cheng-jun, DENG Hou-qin. Research Progress on Chemical Component of Eucommia Folium[J]. Science and Technology of Food Industry, 2019, 40(17): 360-364. DOI: 10.13386/j.issn1002-0306.2019.17.059
    [4]WANG Zi-xuan, XIE Jing, XUE Bin, SHAO Ze-huai, GAN Jian-hong, SUN Tao. Research Progress of Chitosan Food Packaging Film[J]. Science and Technology of Food Industry, 2019, 40(6): 303-307,311. DOI: 10.13386/j.issn1002-0306.2019.06.052
    [5]FANG Fang, WANG Feng-zhong. Research progress on the detection methods of flavonols in plants[J]. Science and Technology of Food Industry, 2018, 39(11): 327-332. DOI: 10.13386/j.issn1002-0306.2018.11.056
    [6]ZHAO Jing, GANG Jie. Research progress in bioaccumulation of trace elements in edible fungus[J]. Science and Technology of Food Industry, 2015, (17): 396-399. DOI: 10.13386/j.issn1002-0306.2015.17.074
    [7]ZHANG Ming- liang, JIANG Xian- zhang, WANG Can, HUANG Jian- zhong. Research progress in DHA production by microbes[J]. Science and Technology of Food Industry, 2014, (21): 395-400. DOI: 10.13386/j.issn1002-0306.2014.21.077
    [8]GAO Jian, MA Lu-shan, HU Jian-jun, FAN Tie-zhen, LIU Guo-ji. Research progress in the extraction method of pectin[J]. Science and Technology of Food Industry, 2014, (06): 368-372. DOI: 10.13386/j.issn1002-0306.2014.06.062
    [9]ZHANG Ke-ping, JIA Juan-juan, WU Jin-feng. Research progress in the mechanical properties of cereal[J]. Science and Technology of Food Industry, 2014, (02): 369-374. DOI: 10.13386/j.issn1002-0306.2014.02.066
    [10]YANG Ying, HUANG Li-jie. Research progress in preparation and application of modified starch[J]. Science and Technology of Food Industry, 2013, (20): 381-385. DOI: 10.13386/j.issn1002-0306.2013.20.086
  • Cited by

    Periodical cited type(26)

    1. 周新雨,王子欢,杨小平,王志新,贾利蓉,段飞霞. 天然着色剂与抗氧化剂对~(60)Co-γ射线辐照辣椒红油的协同护色作用研究. 中国调味品. 2025(01): 68-77 .
    2. 陈宇佳,邓朝军,张婷婷,王秀平,陈秀萍,赵加宁,马翠兰,蒋际谋. 基于图像识别的枇杷资源果肉褐变鉴定方法研究与应用. 果树学报. 2025(02): 288-299 .
    3. 张康逸,温青玉,刘燕,耿宁宁,张嫚,何梦影. 一种植物蛋白复合肽盐的工艺研究. 中国调味品. 2024(03): 137-144 .
    4. 张洪交,张存喜,王瑞,王可,乔倩. 基于图像处理和改进DenseNet网络的小黄鱼新鲜度识别. 南方水产科学. 2024(03): 133-142 .
    5. 唐一诺,章肖肖,宋文文,宋盈萱,高露,陈晓乐,郑振佳. 胭脂虫红色素口红制备工艺优化及品质分析. 中国食品添加剂. 2024(08): 139-147 .
    6. 刘恒言,陈秀金,臧鹏,董海胜,孙京超,赵伟,白玉冰,徐楠,张龙振,王雪晴,杜秉健,王耀,李兆周. 面包的品质变化及改良的研究进展. 食品与发酵工业. 2024(17): 394-404 .
    7. 骆冬莹,孙蕾,孙金威,梁文星,王苏宁,赵广生. 纳滤与闪蒸技术对新鲜牛乳浓缩效果的影响. 中国乳品工业. 2024(09): 75-80 .
    8. 杨芳,王逊城,贾洪锋,许程剑,袁海彬. 基于GC-IMS结合多元统计方法对不同品种植物油制备的辣椒油风味品质的比较. 现代食品科技. 2024(10): 338-350 .
    9. 鲍雨婷,陈琪,王灼琛. 低温油炸黄茶风味小麦脆片加工工艺优化及品质分析. 中国食品学报. 2024(11): 254-268 .
    10. 张莉,季国志,母智深. 不同豆类蛋白粉的属性和营养消化特性研究. 粮食与饲料工业. 2024(06): 19-23 .
    11. 董阳阳,阿衣古丽·阿力木,阿依古扎尔·木合塔尔江,冯作山. 响应面优化真空包装羊肉块加工工艺. 中国调味品. 2023(01): 128-133 .
    12. 冯子健,陈南,高浩祥,何强,曾维才. 茶多酚对酸奶发酵品质及抗氧化活性的影响. 食品工业科技. 2023(02): 143-151 . 本站查看
    13. 邬帅帆. 食品镀铝包装的阻光性能评价. 现代食品. 2023(05): 189-192 .
    14. 罗丽,付院生,陈万林,聂益晗,赵亚茹,王顺民. 鲜切莲藕超声-热处理护色工艺优化. 中国果菜. 2023(05): 17-21+28 .
    15. 黄昊,林韡,杨强,童国强,胡志平,陈双,徐岩. 陈酿白酒中黄色呈色强度快速表征方法的研究. 食品与发酵工业. 2023(10): 245-250 .
    16. 周弦,许蓉蓉,庄全典,高梦祥,江洪波. 生姜柠檬软糖的工艺优化. 食品工业. 2023(05): 91-95 .
    17. 唐悦,杨旭. 食品的视觉效果对消费者感知及购买行为影响研究. 现代商业. 2023(10): 3-6 .
    18. 孙雯,阎佳楠,来斌,王策,吴海涛. 负载褪黑素和枸杞粉的凝胶糖果的研制及特性研究. 食品工业科技. 2023(22): 201-209 . 本站查看
    19. 王博,胡晓妍,于芳珠,刘登勇. 基于机器视觉技术制作烤羊肉比色卡. 食品工业科技. 2022(03): 10-17 . 本站查看
    20. 巩雪. 超高压作用下扇贝闭壳肌色差变化探析. 包装学报. 2022(01): 70-80 .
    21. 魏甜甜,魏勃,王承,李凯,谢彩锋,杭方学. 黄冰糖低温浸渍茉莉花制备风味糖浆工艺优化. 食品工业科技. 2022(12): 181-187 . 本站查看
    22. 郭超男,年国芳,徐建宗,周建中. 25种新疆主栽辣椒品种品质分析. 食品安全质量检测学报. 2022(12): 4051-4058 .
    23. 邓家棋,陈嘉澍,黄桂颖,冯卫华,雷梦琳,白卫东,安可靖,余元善,王辉,戴卓文,杨启财,杨婉媛. 基于感官喜爱度排序的广式佛手柑凉果的品质分析. 农产品加工. 2022(12): 82-87 .
    24. 陈茜,张雪春,王振兴,何雪梅,孙健. 不同加工方式对香蕉片品质的影响. 南方农业学报. 2022(05): 1305-1315 .
    25. 吴昕怡,田浩,牛之瑞,桂敏,潘俊,王瀚墨,周继伟,朱志妍,刘秀嶶. 基于熵权的TOPSIS和聚类分析评价方法的发酵辣椒品种适用性研究. 食品安全质量检测学报. 2022(22): 7314-7322 .
    26. 张衍旭,邱智东,高英鑫,王野谌,董雪莲. 基于色差原理及指纹图谱对淡竹叶药材质量评价研究. 时珍国医国药. 2022(12): 3057-3061 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (181) PDF downloads (17) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return