ZHANG Shuang, HAN Rongxin, WANG Xin, et al. Study on the Functional Properties and Antioxidant Activities of Different Enzymatic Hydrolysates of Ziziphi Spinosae Semen Protein[J]. Science and Technology of Food Industry, 2022, 43(9): 31−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070167.
Citation: ZHANG Shuang, HAN Rongxin, WANG Xin, et al. Study on the Functional Properties and Antioxidant Activities of Different Enzymatic Hydrolysates of Ziziphi Spinosae Semen Protein[J]. Science and Technology of Food Industry, 2022, 43(9): 31−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070167.

Study on the Functional Properties and Antioxidant Activities of Different Enzymatic Hydrolysates of Ziziphi Spinosae Semen Protein

More Information
  • Received Date: July 14, 2021
  • Available Online: March 02, 2022
  • Using Ziziphi Spinosae semen as raw material, Ziziphi Spinosae semen protein was extracted by alkali extraction and acid precipitation method. The Ziziphi Spinosae semen protein was hydrolyzed by three different proteases (alkaline protease, neutral protease and papain). The functional properties and antioxidant activity of enzymatic hydrolysates from Ziziphi Spinosae semen protein were studied. The results showed that the solubility, oil holding capacity, foaming capacity and stability, emulsifying capacity and stability of protein hydrolysates from different Ziziphi Spinosae semen were improved in different degrees compared with protein hydrolysates from Ziziphi Spinosae semen, among them, papain hydrolysate had the strongest solubility, oil holding, foaming and emulsifying properties, and alkaline protease hydrolysate had the strongest foaming and emulsifying stability. In vitro antioxidant studies showed that compared with of Ziziphi Spinosae semen protein, the antioxidant activities of enzymatic hydrolysates obtained by different proteases were significantly improved, the alkaline protease DPPH scavenging ability, hydroxyl radical scavenging ability, super oxygen anion clearance and ABTS+ radical scavenging ability were higher than those of other enzymatic hydrolysates, when the mass concentration was 2.5 mg/mL, the highest DPPH radical scavenging rate was 95.83%, the superoxide anion radical scavenging rate was 44.77%, the ABTS radical scavenging rate was 90.84%, and the hydroxyl radical scavenging rate was 44.77%. Therefore, this study shows that the enzymatic hydrolysate of Ziziphi Spinosae semen protein has good food processing performance, and its antioxidant activity is significantly increased, protein sources can be used as a potential protein resource in food, and provides a theoretical basis for the application of Ziziphi Spinosae semen protease hydrolysate in food industry.
  • [1]
    袁杨杨, 孙从永, 徐希明, 等. 酸枣仁活性成分药理作用机制的研究进展[J]. 中国药师,2017,20(9):1622−1627. [YUAN Y Y, SUN C Y, XU X M, et al. Research progress on pharmacological mechanism of active components fromZiziphi spinosaesemen[J]. China Pharm,2017,20(9):1622−1627. doi: 10.3969/j.issn.1008-049X.2017.09.028
    [2]
    谭云龙, 孙晖, 王喜军, 等. 酸枣仁化学成分及其药理作用研究进展[J]. 时珍国医国药,2014,25(1):186−188. [TAN Y L, SUN H, WANG X J, et al. Research progress on chemical constituents and pharmacological effects of Ziziphi spinosae semen[J]. Shi Zhen, Traditional Chinese Medicine,2014,25(1):186−188.
    [3]
    ZHANG H Y, SHAO S, YAN M M, et al. Structural, physicochemical and functional properties of Semen Ziziphi spinosae protein[J]. Rsc Advances,2020,10:29555−29566. doi: 10.1039/D0RA03731A
    [4]
    陈丹阳, 韩涛, 杜斌, 等. 酶解蚕豆蛋白制备多肽酒及其抗氧化研究[J]. 中国粮油学报,2017,27(12):22−27. [CHEN D Y, HAN T, DU B, et al. Preparation of polypeptide wine by enzymatic hydrolysis of broad bean protein and its antioxidant activity[J]. Chinese Journal of Cereals and Oils,2017,27(12):22−27.
    [5]
    姚余祥, 张九亮, 何慧, 等. 鹰嘴豆江胆固醇肽的制备及活性[J]. 中国粮油学报,2015,30(1):33−38. [YAO Y X, ZHANG J L, HE H, et al. Preparation and activity of chickpea cholesterol peptide[J]. Chinese Journal of Cereals and Oils,2015,30(1):33−38.
    [6]
    阎震, 郭溆, 张金宝, 等. 酶解牡丹籽粕蛋白制备抗氧化肽的工艺优化[J]. 食品工业科技,2018,39(7):168−174, 180. [YAN Z, GUO X, ZHANG J B, et al. Optimization of process for preparation of antioxidant peptides by enzymatic hydrolysis of protein prepared from peony seed meal[J]. Science and Technology of Food Industry,2018,39(7):168−174, 180.
    [7]
    赵节昌. 酶解酸枣仁蛋白制备抗氧化肽的研究[J]. 食品工业科技,2014,35(3):249−252, 257. [ZHAO J C. Preparation of antioxidant peptides by enzymatic hydrolysis of jujube kernel protein[J]. Food Industry Science and Technology,2014,35(3):249−252, 257.
    [8]
    郑志强, 李宝林, 郝利民, 等. 不同蛋白酶对小麦蛋白酶解物抗氧化活性的影响[J]. 食品科学,2017,38(7):161−166. [ZHENG Z Q, LI B L, HAO L M, et al. Effects of different proteases on antioxidant activity of wheat protein hydrolysates[J]. Food Science,2017,38(7):161−166. doi: 10.7506/spkx1002-6630-201707026
    [9]
    WANG K D, TIAN Y P, ZHOU N D, et al. Studies on fermentation optimization, stability and application of prolyl aminopeptidase fromBacillus subtilis[J]. Process Biochem,2018,74(11):10−20.
    [10]
    国家食品药品监督管理总局. GB 5009.124-2016. 食品安全国家标准 食品中氨基酸的测定[S]. 北京:中国出版社, 2016.

    State Food and Drug Administration. GB 5009. 124-2016. National food safety standard. Determination of amino acids in foods[S]. Beijing: China Stadards Press, 2016.
    [11]
    高英, 俞玉忠. 福林酚法测定脑蛋白水解物溶液中的多肽含量[J]. 海峡药学,2004(6):57−58. [GAO Y, YU Y Z. Determination of polypeptide content in brain protein hydrolysate solution by Folin phenol method[J]. Strait Pharmacy,2004(6):57−58. doi: 10.3969/j.issn.1006-3765.2004.06.030
    [12]
    刘颖, 刘丽宅, 于晓红, 等. 限制性酶解乳清蛋白功能特性研究[J]. 食品工业科技,2017,38(4):127−131. [LIU Y, LIU L Z, YU X H, et al. Functional properties of restricted enzymolysis whey protein[J]. Food Industry Technology,2017,38(4):127−131.
    [13]
    LATORRES J M, RIOS D G, SAGGIOMO G, et al. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Latopenaeus vannamea)[J]. Journal of Food Science and Technology,2018,55(2):721−729. doi: 10.1007/s13197-017-2983-z
    [14]
    李晓娇, 郜玉钢, 张连学, 等. 奇亚籽化学成分、药理作用及产品开发的研究进展[J]. 粮食与油脂,2018,31(5):13−15. [LI X J, GAO Y G, ZHANG L X, et al. Research progress on chemical composition, pharmacological action and product development of Qiya seed[J]. Food and Oil,2018,31(5):13−15.
    [15]
    PANDHARE G R, KATKE S D. Studies on preparation of chia seed fortified cookies[J]. Contemporary Research in India,2018,8(1):25−28.
    [16]
    张丽霞, 顾振新, 周剑忠, 等. 双酶水解麦胚制备抗氧化肽的工艺优化[J]. 江苏农业学报,2010,26(3):601−606. [ZHANG L X, GU Z X, ZHOU J M, et al. Optimization of preparation of antioxidant peptides from wheat germ by double enzyme hydrolysis[J]. Journal of Jiang Su Agriculture,2010,26(3):601−606. doi: 10.3969/j.issn.1000-4440.2010.03.030
    [17]
    陈建双, 李佳欣, 杨洋, 等. 山药水提物提取工艺优化及抗氧化活性分析[J]. 粮食与油脂,2021,34(6):155−159. [CHEN J S, LI J X, YANG Y, et al. Optimization of water extract process from yam and its antioxidant activity analysis[J]. Cereals & Oils,2021,34(6):155−159. doi: 10.7506/spkx1002-6630-20180626-484
    [18]
    盛彩虹, 刘烨, 刘大川, 等. 紫苏分离蛋白功能性研究[J]. 食品科学,2011,32(17):137−140. [SHENG C H, LIU Y, LIU D C, et al. Functional study of Perilla protein isolate[J]. Food Science,2011,32(17):137−140.
    [19]
    熊拯, 陈敏娥, 张炳亮. 油菜籽粨蛋白质提取工艺及功能性研究[J]. 粮油食品科技,2013,21(1):21−30. [XIONG Z, CHEN M E, ZHANG B L. Study on extraction technology and function of rapeseed protein[J]. Cereals, Oils and Food Science and Technology,2013,21(1):21−30.
    [20]
    DONG Z Y, LI M Y, TIAN G, et al. Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method[J]. Food Chemistry,2019,299:125103. doi: 10.1016/j.foodchem.2019.125103
    [21]
    范宁宇, 阚欢, 许善午, 等. 中性蛋白酶水解核桃蛋白工艺[J]. 食品研究与开发,2011,32(11):78−81. [FAN N N, KAN H, XU S N, et al. Hydrolysis of walnut protein by neutral protease[J]. Food Research and Development,2011,32(11):78−81. doi: 10.3969/j.issn.1005-6521.2011.11.023
    [22]
    赵晨煊, 李瑞婷. 文冠果油籽蛋白的分离及其酶解产物抗氧化性研究[J]. 农产品加工,2020,20:20−25. [ZHAO C X, LI R T. Isolation of Xanthoceras sorbifolia oleifera protein and study on the antioxidant activity of its enzymatic hydrolysates[J]. Processing of Agricultural Products,2020,20:20−25.
    [23]
    SARBON N M, BADII F, HOWELL N K. Purification and characterization of antioxidative peptides derived from chicken skin gelatin hydrolysate[J]. Food Hydrocolloids,2018,85:311−320. doi: 10.1016/j.foodhyd.2018.06.048
    [24]
    刘淳, 张海英, 韩涛, 等. Alcalase碱性蛋白酶酶解蚕豆蛋白的研究[J]. 中国粮油学报,2011,26(12):29−33. [LIU C, ZHANG H Y, HAN T, et al. Study on enzymatic hydrolysis of broad bean protein by Alcalase alkaline protease[J]. Chinese Journal of Cereals and Oils,2011,26(12):29−33.
    [25]
    田杰, 柴莎莎, 胡传荣, 何东平. 风味蛋白酶酶解大豆分离蛋白及对其功能特性影响研究[J]. 中国油脂,2015,40(10):11−14. [TIAN J, CHAI S S, HU C R, et al. Enzymatic hydrolysis of soybean protein isolate by flavourzyme and its effect on its functional properties[J]. Chinese Journal of Oil and Fat,2015,40(10):11−14. doi: 10.3969/j.issn.1003-7969.2015.10.003
    [26]
    ZHONG C, SUN L C, YAN L J, et al. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory petides from sea cucumber (Stichopus japonicus) gonad[J]. Food Function,2018,9(1):594−603. doi: 10.1039/C7FO01388D
    [27]
    陈金玉, 曲金萍, 张坤生, 等. 酶解制备苦荞蛋白抗氧化肽及其分离纯化研究[J]. 食品研究与开发,2020,41(12):14−20. [CHEN J Y, QU J P, ZHANG K S, et al. Preparation of antioxidant peptides from tartary buckwheat protein by enzymatic hydrolysis and its separation and purification[J]. Food Research and Development,2020,41(12):14−20.
    [28]
    DU M, XIE J, GONG B, et al. Extraction, physicochemical characteristics and functional properties of mung bean protein[J]. Food Hydrocolloids,2017,21:131−140.
    [29]
    李琴, 张海生, 许珊, 等. 绿豆抗氧化活性肽的制备及其抗氧化活性研究[J]. 江西农业大学学报,2013,35(5):1063−1069. [LI Q, ZHANG H S, XU S, et al. Preparation and antioxidant activity of antioxidant peptides from mung bean[J]. Journal of Jiangxi Agricultural University,2013,35(5):1063−1069. doi: 10.3969/j.issn.1000-2286.2013.05.029
    [30]
    张然, 严文慧, 齐斌. 核桃蛋白酶解产物的特性研究[J]. 食品科学,2011,32(1):23−26. [ZHANG R, YAN W H, QI B. Study on the properties of walnut protein hydrolysate[J]. Food Science,2011,32(1):23−26.
    [31]
    SARMADI B H, ISMAIL A. Antioxidant peptides from food proteins a review[J]. Food Science,2008,29(11):72−76.
  • Related Articles

    [1]SHI Qilong, LIU Jing, ZHAO Ya. Numerical Simulation of Protein Denaturation of Scallop Adductors during Heating Based on Temperature Distribution and Water Status Distribution[J]. Science and Technology of Food Industry, 2025, 46(5): 239-247. DOI: 10.13386/j.issn1002-0306.2024030367
    [2]MA Yonghui, LIU Guishan, HE Jianguo, KANG Ningbo, CHEN Shoutao, YIN Junjie, LIU Mengqi, JIA Lili. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9-17. DOI: 10.13386/j.issn1002-0306.2021110311
    [3]WANG Ya-juan, ZHANG Feng-juan, TENG Jian-wen, WEI Bao-yao, WANG Qin-zhi. Numerical Simulation of Microwave Vacuum Drying Kinetics of Carrot Chips[J]. Science and Technology of Food Industry, 2020, 41(18): 17-23. DOI: 10.13386/j.issn1002-0306.2020.18.003
    [4]ZHU Kai, LI Yan-jie, WANG Ya-bo, WANG Jin-shan. Internal Water Phase Changes and Surface Moisture Loss Kinetics of Broad Bean Seeds during Dehydration[J]. Science and Technology of Food Industry, 2020, 41(17): 51-57. DOI: 10.13386/j.issn1002-0306.2020.17.009
    [5]LI Chun-hui, ZHANG Min, AI Wen-ting, SHAO Ting-ting, LIU Wei, ZHU Sai-sai. Effects of different temperature field responses on postharvest storage quality of Cucurbita pepo L.[J]. Science and Technology of Food Industry, 2018, 39(2): 272-277,284. DOI: 10.13386/j.issn1002-0306.2018.02.051
    [6]DU Jing, LIU Tao, XU Ze, LI Chun-mei. Numberical simulation and experiment verification study on low temperature spray-drying of persimmon pulp[J]. Science and Technology of Food Industry, 2015, (21): 237-241. DOI: 10.13386/j.issn1002-0306.2015.21.041
    [7]LI Jing, JIN Guang-yuan, ZHANG Min, CUI Zheng-wei, ZHONG Jian-xun. Numerical study on spout fluidization dynamics in pulsed- spout microwave- vacuum dryer[J]. Science and Technology of Food Industry, 2015, (11): 79-83. DOI: 10.13386/j.issn1002-0306.2015.11.008
  • Cited by

    Periodical cited type(9)

    1. 尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
    2. 王宇昂,刘晓鹏,宋少云,曹梅丽,张永林. 基于多耦合物理场的“香菇-热风”互作过程分析. 武汉轻工大学学报. 2024(06): 94-102 .
    3. 张瑞,李国伟,刘扬,兰海鹏,张永成,范修文. 坚果干燥技术研究现状分析及展望. 新疆农机化. 2023(02): 34-38+48 .
    4. 肖更生,林可为,沈乔眉,刘东杰,马路凯,王锋. 岭南特色水果干燥加工技术研究进展. 轻工学报. 2023(04): 1-10 .
    5. 刘烨,陈鹏枭,朱文学,樊梦珂,吴建章,蒋萌蒙. 农产品干燥过程数值模拟研究现状及进展. 食品与发酵工业. 2023(16): 331-339 .
    6. 王雪妃,王田,许铭强,张艳艳,承春平,杜雨桐,陈恺,李焕荣. 赛买提鲜杏整果热风干燥特性及水分迁移规律研究. 食品与发酵工业. 2023(20): 91-99 .
    7. 王泽林,刘芳,耿文广,高玲,张大鹏,李子淳,张潇. 苹果切片对流干燥过程热湿影响因素模拟. 煤气与热力. 2022(12): 14-19 .
    8. 李佳欢,杨斌,任佳媛,金文松,孙淑静,胡开辉. 热风干燥温度对荷叶离褶伞干燥特性及挥发性风味物质的影响. 菌物学报. 2021(12): 3304-3319 .
    9. 蒋华彬,白洁,张小飞,李经伟,李玉美,郭宏,彭义交. 气流膨化过程中马铃薯方便粥水分变化动力学模型及品质变化分析. 食品科学. 2021(23): 137-144 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (239) PDF downloads (21) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return