Citation: | ZHUANG Guodong, TANG Dan, CHEN Yongsheng. Research Progress of Bound Polyphenols in Improving Intestinal Oxidative Stress and Intestinal Barrier[J]. Science and Technology of Food Industry, 2022, 43(11): 440−448. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070114. |
[1] |
QIAO Y, SUN J, DING Y, et al. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J]. Applied Microbiology and Biotechnology,2013,97(4):1689−1697. doi: 10.1007/s00253-012-4323-6
|
[2] |
乔艺. 高脂诱导的氧化应激对小鼠肠道菌群改变与炎症反应的影响[D]. 无锡: 江南大学, 2014.
QIAO Y. Effects of high-fat-induced oxidative stress on changes of intestinal flora and inflammation in mice[D]. Wuxi: Jiangnan University, 2014
|
[3] |
KHAN S, WALIULLAH S, GODFREY V, et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice[J]. Science Translational Medicine,2020,12(567):6218. doi: 10.1126/scitranslmed.aay6218
|
[4] |
DIXON LJ, KABI A, NICKERSON K P, et al. Combinatorial effects of diet and genetics on inflammatory bowel disease pathogenesis[J]. Inflammatory Bowel Diseases,2015,21(4):912−922. doi: 10.1097/MIB.0000000000000289
|
[5] |
TRUZZI F, DINELLI G, SPISNI E, et al. Phenolic acids of modern and ancient grains: Effect on in vitro cell model[J]. Journal of the Science of Food and Agriculture,2020,100(11):4075−4082. doi: 10.1002/jsfa.9796
|
[6] |
BREUGELMANS T, VAN SPAENDONK H, DE MAN J G, et al. In-depth study of transmembrane mucins in association with intestinal barrier dysfunction during the course of T cell transfer and DSS-Induced colitis[J]. Journal of Crohn's & Colitis,2020,14(7):974−994.
|
[7] |
ZHANG S, XU W, WANG H, et al. Inhibition of CREB-mediated ZO-1 and activation of NF-κB-induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function[J]. Cell Proliferation,2019,52(6):e12673.
|
[8] |
LIU K Y, NAKATSU C H, JONES-HALL Y, et al. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice[J]. Free Radical Biology & Medicine,2021,163:180−189.
|
[9] |
LU Y, ZAMORA-ROS R, CHAN S, et al. Dietary polyphenols in the aetiology of Crohn's disease and ulcerative colitis-A multicenter european prospective cohort study (EPIC)[J]. Inflammatory Bowel Diseases,2017,23(12):2072−2082. doi: 10.1097/MIB.0000000000001108
|
[10] |
MASOODI M, MAHDIABADI M A, MOKHTARE M, et al. The efficacy of curcuminoids in improvement of ulcerative colitis symptoms and patients' self-reported well-being: A randomized double-blind controlled trial[J]. Journal of Cellular Biochemistry,2018,119(11):9552−9559. doi: 10.1002/jcb.27273
|
[11] |
ROCHA B S, NUNES C, LARANJINHA J. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome[J]. The International Journal of Biochemistry & Cell Biology,2016,81(Pt B):393−402.
|
[12] |
GORZYNIK-DEBICKA M, PRZYCHODZEN P, CAPPELLO F, et al. Potential health benefits of olive oil and plant polyphenols[J]. International Journal of Molecular Sciences,2018,19(3):686. doi: 10.3390/ijms19030686
|
[13] |
PHAN A D, NETZEL G, WANG D, et al. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects[J]. Food Chemistry,2015,171(15):388−396.
|
[14] |
颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15):249−254. [YAN C Z, YE F Y, ZHAO G H. A review of studies on free and bound polyphenols in foods[J]. Food Science,2015,36(15):249−254. doi: 10.7506/spkx1002-6630-201515046
|
[15] |
DOMÍNGUEZ-RODRÍGUEZ G, MARINA M L, PLAZA M. Strategies for the extraction and analysis of non-extractable polyphenols from plants[J]. Journal of Chromatography A,2017,1514:1−15. doi: 10.1016/j.chroma.2017.07.066
|
[16] |
刘冬, 万红霞, 赵旭, 等. 小麦不同部位在体外模拟消化过程中抗氧化活性的变化规律[J]. 现代食品科技,2016,32(4):94−99. [LIU D, WAN H X, ZHAO X, et al. Changes in antioxidant activity in different parts of wheat during in vitro simulated digestion[J]. Modern Food Science and Technology,2016,32(4):94−99.
|
[17] |
LI W, ZHANG X, HE X, et al. Effect of steam explosion pretreatment on the composition and bioactive activities of tartary buckwheat bran phenolics[J]. Food & Function,2020,11(5):4648−4658.
|
[18] |
DVOŘÁKOVÁM, GUIDO L F, P DOSTÁLEK, et al. Antioxidant properties of free, soluble ester and insoluble-bound phenolic compounds in different barley varieties and corresponding malts[J]. Journal of the Institute of Brewing,2008,114(1):27−33. doi: 10.1002/j.2050-0416.2008.tb00302.x
|
[19] |
骆亚丽, 杨聪颖, 肖航, 等. 番石榴中结合多酚碱水解与酸水解法提取工艺优化的比较[J]. 天然产物研究与开发,2018,30(7):1242−1251. [LUO Y L, YANG C Y, XIAO H, et al. Optimization and comparison of alkali extraction and acid extraction of bound polyphenols in psidium guajava linn[J]. Natural Product Research and Development,2018,30(7):1242−1251.
|
[20] |
ZHANG X, ZHU K, XIE J, et al. Optimization and identification of non-extractable polyphenols in the dietary fiber of jackfruit (Artocarpus heterophyllus Lam.) pulp released by alkaline, acid and enzymatic hydrolysis: Content, composition and antioxidant activities[J]. LWT-Food Science and Technology,2021,138:110400. doi: 10.1016/j.lwt.2020.110400
|
[21] |
肖星凝, 李苇舟, 石芳, 等. 不同品种李子多酚组成及抗氧化活性[J]. 食品科学,2017,38(15):31−37. [XIAO X N, LI W Z, SHI F, et al. Antioxidant activity and phenolic contents of peel and pulp of different plum varieties[J]. Food Science,2017,38(15):31−37. doi: 10.7506/spkx1002-6630-201715006
|
[22] |
王青, 赵惠玲, 牛晋平, 等. 胡萝卜结合态多酚对HepG-2肝癌细胞增殖抑制及促进凋亡作用的研究[J]. 营养学报,2019,41(4):386−392. [WANG Q, ZHAO H L, NIU J P, et al. Bound polyphenols from daucus carota inhibit proliferation and promote apoptosis in HepG2 cells[J]. Acta Nutrimenta Sinica,2019,41(4):386−392.
|
[23] |
CUEVAS MONTILLA E, HILLEBRAND S, ANTEZANA A, et al. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars[J]. Journal of Agricultural and Food Chemistry,2011,59(13):7068−7074. doi: 10.1021/jf201061x
|
[24] |
PATRICIA P, ZUGEY H, ROSARIO O, et al. Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity[J]. Journal of Food Science and Technology,2018,55(9):3453−3461. doi: 10.1007/s13197-018-3269-9
|
[25] |
周冰怡, 张波, 曹艳. 桑葚果渣中结合态多酚提取工艺优化[J]. 现代食品,2020(9):84−87. [ZHOU B Y, ZHANG B, CAO Y, et al. Optimization of extraction process of combined polyphenols from mulberries residue[J]. Modern Food,2020(9):84−87.
|
[26] |
LIU S, YU Q, HUANG H, et al. The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro[J]. Food & Function,2020,11(1):748−758.
|
[27] |
DONG R, YU Q, LIAO W, et al. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity[J]. Food Chemistry, 2021, 339(1): 127879.
|
[28] |
DONG R, LIU S, ZHENG Y, et al. Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity in in vitro digestion and colonic fermentation[J]. Food & Function,2020,11(7):6652−6665.
|
[29] |
BALLESTER-SÁNCHEZ J, GIL J V, HAROS C M, et al. Effect of incorporating white, red or black quinoa flours on free and bound polyphenol content, antioxidant activity and colour of bread[J]. Plant Foods for Human Nutrition,2019,74(2):185−191. doi: 10.1007/s11130-019-00718-w
|
[30] |
GONG E S, GAO N, LI T, et al. Effect of in vitro digestion on phytochemical profiles and cellular antioxidant activity of whole grains[J]. Journal of Agricultural and Food Chemistry,2019,67(25):7016−7024. doi: 10.1021/acs.jafc.9b02245
|
[31] |
ORDOÑEZ-DÍAZ J L, MORENO-ORTEGA A, ROLDÁN-GUERRA F J, et al. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera indica L.) pulp polyphenols[J]. Foods,2020,9(12):1−17.
|
[32] |
WILLIAMSON G, CLIFFORD M N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols[J]. Biochemical Pharmacology,2017,139:24−39. doi: 10.1016/j.bcp.2017.03.012
|
[33] |
TOMAS M, ROCCHETTI G, GHISONI S, et al. Effect of different soluble dietary fibres on the phenolic profile of blackberry puree subjected to in vitro gastrointestinal digestion and large intestine fermentation[J]. Food Research International,2020,130:108954. doi: 10.1016/j.foodres.2019.108954
|
[34] |
DIAZ DE BARBOZA G, GUIZZARDI S, MOINE L, et al. Oxidative stress, antioxidants and intestinal calcium absorption[J]. World Journal of Gastroenterology,2017,23(16):2841−2853. doi: 10.3748/wjg.v23.i16.2841
|
[35] |
CIRCU M L, AW T Y. Intestinal redox biology and oxidative stress[J]. Seminars in Cell & Developmental Biology,2012,23(7):729−737.
|
[36] |
KLOSKA M, MAŃKOWSKA-WIERZBICKA D, CZŁAPKA-MATYASIK M, et al. Oxidative stress in etiopathogenesis of inflammatory bowel diseases[J]. Postepy Biochemii,2020,66(2):143−150.
|
[37] |
王啸春, 陈小连, 赵珂立, 等. 动物肠道氧化应激及抗氧化剂干预作用研究进展[J]. 中国畜牧杂志,2011,47(11):73−78. [WANG X C, CHEN X L, ZHAO K L, et al. Recent advance in oxidative stress in intestinal tract and intervention of antioxidants[J]. Chinese Journal of Animal Science,2011,47(11):73−78.
|
[38] |
WU J, HE C, BU J, et al. Betaine attenuates LPS-induced down regulation of occludin and Claudin-1 and restores intestinal barrier function[J]. BMC Veterinary Research,2020,16(1):75. doi: 10.1186/s12917-020-02298-3
|
[39] |
TALEB S. Tryptophan dietary impacts gut barrier and metabolic diseases[J]. Frontiers in Immunology,2019,10:2113. doi: 10.3389/fimmu.2019.02113
|
[40] |
CHELAKKOT C, GHIM J, RYU S H. Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Experimental & Molecular Medicine,2018,50(8):103.
|
[41] |
袁敏兰, 苏天霞, 吴映梅, 等. 猕猴桃多酚提取物对高脂膳食所致肠道损伤的保护作用及其机制研究[J]. 营养学报,2020,42(4):382−387. [YUAN M L, SU T X, WU Y M, et al. The protective effect of kiwifruit polyphenols extract on intestinaldmage caused by high fat diet and the mechanism involed[J]. Acta Nutrimenta Sinica,2020,42(4):382−387. doi: 10.3969/j.issn.0512-7955.2020.04.013
|
[42] |
CAO S, WANG C, YAN J, et al. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway[J]. Free Radical Biology & Medicine,2020,147:8−22.
|
[43] |
韩月, 黄友解, 王友明. 氧化应激对动物肠道的危害及其营养学缓解措施[J]. 上海畜牧兽医通讯,2017(4):44−49. [HAN Y, HUANG Y J, WANG Y M. Harm of oxidative stress to animal intestines and nutritional mitigation measures[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine,2017(4):44−49.
|
[44] |
SUN X, CUI Y, SU Y, et al. Dietary fiber ameliorates lipopolysaccharide-induced intestinal barrier function damage in piglets by modulation of intestinal microbiome[J]. mSystems, 2021, 6(2): e01374-20.
|
[45] |
PISTOL G C, BULGARU C V, MARIN D E, et al. Dietary grape seed meal bioactive compounds alleviate epithelial dysfunctions and attenuates inflammation in colon of DSS-treated piglets[J]. Foods, 2021, 10(3): 530.
|
[46] |
ZHUANG Y, WU H, WANG X, et al. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-Mediated Nrf2 signaling pathway[J]. Oxidative Medicine and Cellular Longevity,2019,2019:7591840.
|
[47] |
NALLATHAMBI R, POULEV A, ZUK J B, et al. Proanthocyanidin-rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 colon cells[J]. Nutrients, 2020, 12(6).
|
[48] |
CHEN Y, YANG B, ROSS R P, et al. Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation[J]. Journal of Agricultural and Food Chemistry,2019,67(48):13282−13298. doi: 10.1021/acs.jafc.9b05744
|
[49] |
SHIMIZU M. Multifunctions of dietary polyphenols in the regulation of intestinal in flammation[J]. Journal of Food and Drug Analysis,2017,25(1):93−99. doi: 10.1016/j.jfda.2016.12.003
|
[50] |
LI W, YANG H, ZHAO Q, et al. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice[J]. Journal of Agricultural and Food Chemistry,2019,67(27):7726−7737. doi: 10.1021/acs.jafc.9b02523
|
[51] |
MARTÍNEZ Y, MÁS D, BETANCUR C, et al. Role of the phytochemical compounds like modulators in gut microbiota and oxidative stress[J]. Current Pharmaceutical Design,2020,26(22):2642−2656. doi: 10.2174/1381612826666200515132218
|
[52] |
YAO Y, WANG H, XU F, et al. Insoluble-bound polyphenols of adlay seed ameliorate HO-induced oxidative stress in HepG2 cells via Nrf2 signalling[J]. Food Chemistry,2020,325:126865. doi: 10.1016/j.foodchem.2020.126865
|
[53] |
GE H, CHEN Y, CHEN J, et al. Evaluation of antioxidant activities of ethanol extract from Ligusticum subjected to in-vitro gastrointestinal digestion[J]. Food and Chemical Toxicology,2018,119:417−424. doi: 10.1016/j.fct.2017.12.035
|
[54] |
MAURER L H, CAZARIN C B B, QUATRIN A, et al. Grape peel powder attenuates the inflammatory and oxidative response of experimental colitis in rats by modulating the NF-κB pathway and activity of antioxidant enzymes[J]. Nutrition Research,2020,76:52−70.
|
[55] |
朱佳杰, 刘珊, 郭宇, 等. 姜黄素对肠道屏障的作用及机制[J]. 中国中西医结合消化杂志,2021,29(2):147−150. [ZHU J J, LIU S, GUO Y, et al. Effects and mechanisms of curcumin on intestinal barrier function[J]. Chinese Journal of Iintegrated Traditional and Western Medicine on Digestion,2021,29(2):147−150. doi: 10.3969/j.issn.1671-038X.2021.02.14
|
[56] |
陈晓, 周艳, 孙晓红. 多酚类化合物与肠黏膜机械屏障研究进展[J]. 现代预防医学,2020,47(23):4317−4320. [CHEN X, ZHOU Y, SUN X H. Research progress of polyphenols and intestinal mucosal mechanical barrier[J]. Modern Preventive Medicine,2020,47(23):4317−4320.
|
[57] |
MAURER L H, CAZARIN C B B, QUATRIN A, et al. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound poly-phenols[J]. Food Research International (Ottawa, Ont),2019,123:425−439. doi: 10.1016/j.foodres.2019.04.068
|
[58] |
HE S, GUO Y, ZHAO J, et al. Ferulic acid ameliorates lipopolysaccharide-induced barrier dysfunction via MicroRNA-200c-3p-Mediated activation of PI3K/AKT pathway in Caco-2 cells[J]. Frontiers in Pharmacology,2020,11:376. doi: 10.3389/fphar.2020.00376
|
[59] |
张岚琨, 张志强. 氧化苦参碱靶向抑制Th17对肠道黏膜免疫屏障的作用[J]. 沈阳药科大学学报,2019,36(12):1100−1106. [ZHANG L K, ZHANG Z Q. Effect of oxymatrine on the inhibition of Th17 on intestinal mucosal immune barrier[J]. Journal of Shenyang Pharmaceutical University,2019,36(12):1100−1106.
|
[60] |
李伟, 陈庆森. 肠道黏膜免疫屏障及其菌群与机体健康关系的研究进展[J]. 食品科学,2008(10):649−655. [LI W, CHEN Q S. Research progress of relationship of human health with intestinal mucosal immunity and microflora[J]. Food Science,2008(10):649−655. doi: 10.3321/j.issn:1002-6630.2008.10.156
|
[61] |
ANDERSEN-CIVIL A I S, ARORA P, WILLIAMS A R. Regulation of enteric infection and immunity by dietary proanthocyanidins[J]. Frontiers in Immunology,2021,12:637603. doi: 10.3389/fimmu.2021.637603
|
[62] |
KATAYAMA S, OHNO F, MITANI T, et al. Rutinosylated ferulic acid attenuates food allergic response and colitis by upregulating regulatory T cells in mouse models[J]. Journal of Agricultural and Food Chemistry,2017,65(49):10730−10737. doi: 10.1021/acs.jafc.7b03933
|
[63] |
邹孟龙, 宁芯, 陈雅璐, 等. 四君子汤介导肠道黏膜屏障防治溃疡性结肠炎的研究进展[J]. 中医药导报,2020,26(10):134−137. [ZOU M L, NING X, CHEN Y L, et al. Research progress of sijunzi decoction mediated intestinal mucosal barrier in the prevention and treatment of ulcerative colitis[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy,2020,26(10):134−137.
|
[64] |
刘苗, 张龙林, 宋泽和, 等. 茶多酚对肠黏膜屏障功能的调控作用研究进展[J]. 中国畜牧杂志, 2021, 57(6): 47−52.
LIU M, ZHANG L L, SONG Z H, et al. Research progress on the regulation of tea polyphenols on intestinal mucosal barrier function [J]. Chinese Journal of Animal Science, 2021, 57(6): 47−52.
|
[65] |
TANG W, LI W, YANG Y, et al. Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus)[J]. Foods , 2021, 10(6).
|
[66] |
CHEN J, YU B, CHEN D, et al. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs[J]. The Journal of Nutritional Biochemistry,2018,59:84−92. doi: 10.1016/j.jnutbio.2018.06.005
|
[67] |
SIMONA D, ANNA S, BRUNA D F, et al. Quercetin increases MUC2 and MUC5AC gene expression and secretion in intestinal goblet cell-like LS174T via PLC/PKCα/ERK1-2 pathway[J]. Frontiers in Physiology,2018,9:357. doi: 10.3389/fphys.2018.00357
|
[68] |
张娴, 张晟, 何融冰, 等. 肠道微生物屏障功能与病原菌毒力作用[J]. 现代生物医学进展,2017,17(31):6186−6190. [ZHANG X, ZHANG S, HE R B, et al. Intestinal microbial barrier function and virulence of pathogens[J]. Progress in Modern Biomedicine,2017,17(31):6186−6190.
|
[69] |
王圣子, 王杰, 陈超. 化疗引起肠道屏障功能障碍的机制及其防治研究进展[J]. 山东医药,2021,61(2):88−91. [WANG S Z, WANG J, CHEN C. Research progress on the mechanism and prevention of intestinal barrier dysfunction induced by chemotherapy[J]. Shandong Medical Journal,2021,61(2):88−91. doi: 10.3969/j.issn.1002-266X.2021.02.023
|
[70] |
JIALI CH, BING Y, JIE Y, et al. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation[J]. Applied Microbiology and Biotechnology,2019,103(19):8157−8168. doi: 10.1007/s00253-019-10025-8
|
[71] |
ZHANG P, JIAO H, WANG C, et al. Chlorogenic acid ameliorates colitis and alters colonic microbiota in a mouse model of dextran sulfate sodium-induced colitis[J]. Frontiers in Physiology,2019,10:325. doi: 10.3389/fphys.2019.00325
|
[72] |
HAN M, SONG P X, HUANG C, et al. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model[J]. Oncotarget,2016,7(49):80313−80326. doi: 10.18632/oncotarget.13450
|